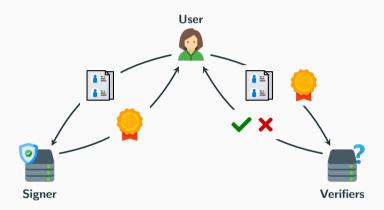
Worst-Case Lattice Sampler with Truncated Gadgets and Applications

December 09th, 2025

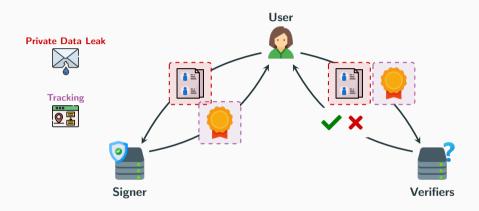
Corentin Jeudy¹, Olivier Sanders¹

¹ Orange, Applied Crypto Group

Digital Signatures



Digital Signatures



A

No control over the disclosed information: Verifiers (and attacker) learn everything Traceable accross different authentications: Same signature allows tracing

Privacy from Zero-Knowledge Proofs

? How is privacy usually obtained? Zero-Knowledge Proof of Signature & Message

Proof of \mathbf{x} s.t. $\mathbf{g}^{\mathbf{x}} = \mathbf{h}$

Proof of \mathbf{x} s.t. $\mathbf{A}\mathbf{x} = \mathbf{u} \ \land \ \|\mathbf{x}\| \le B$

 $\begin{array}{l} \text{Proof of } \mathbf{x} \\ \text{s.t. } \mathcal{H}(\mathbf{x}) = \mathbf{h} \end{array}$

Algebraic

Generic

Not Post-Quantum (CL, BBS, PS, etc.)

Not Very Efficient ♠ ♥ (RSA, ECDSA, FN-DSA, ML-DSA, SLH-DSA, etc.)

Privacy from Zero-Knowledge Proofs

? How is privacy usually obtained? Zero-Knowledge Proof of Signature & Message

Gadget-Based Samplers

Micciancio-Peikert trapdoors $[MP12]^1$: Family of matrices A_t such that

$$\mathbf{A}_t = [\mathbf{A}'|t\mathbf{G} - \mathbf{A}'\mathbf{R}]$$
 and $\mathbf{A}' = [\mathbf{I}|\mathbf{A}]$

verifies
$$\mathbf{A}_{\mathsf{T}}\mathbf{L} = t\mathbf{G} \bmod q$$
, with $\mathbf{L} = \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}$ with $\mathbf{G} = [b^0\mathbf{I}| \dots |b^{k-1}\mathbf{I}]$, and $k = \log_b q$ (base- b decomposition)

Naive Approach: Compute z so that $tGz = u \mod q$, and return Lz as preimage of u

- Collecting many preimages will leak R...
- Gaussian distribution on z and add Gaussian mask p: preimages $\mathbf{v} = \mathbf{p} + \mathbf{L}\mathbf{z} = \begin{bmatrix} \mathbf{p}_1 + \mathbf{R}\mathbf{z} \\ \mathbf{p}_2 + \mathbf{z} \end{bmatrix}$

(and syndrome correction so that $tGz = w = u - A_{tD}$)

¹Micciancio, Peikert, Trapdoors for Lattices; Simpler, Tighter, Faster, Smaller, Eurocrypt 2012

ZK-Friendly Signature from Gadget Sampler

Signature scheme from [AGJ⁺24]²:

$$\mathbf{P}: \mathbf{B} = [\mathbf{I}_d | \mathbf{A}] \mathbf{R}$$

$$t, \mathbf{v}, \mathbf{v}_3$$

$$PP: (A, A_3, D, u', G)$$

Handles arbitrary messages

Security on SIS/LWE

Short-ish signatures (6.7 KB)

Large witness dimension: 2d + k(d + 1)

² Argo, Günevsu, Jeudy, Land, Roux-Langlois, Sanders, Practical Post-Quantum Signatures for Privacy, CCS 2024

Reduce Dimension with Approximate Trapdoor

Reduce gadget dimension with "approximate trapdoors" [CGM19]³ with truncation.

Note $\mathbf{G}_L = [b^0 \mathbf{I}_d| \dots |b^{\ell-1} \mathbf{I}_d]$, $\mathbf{G}_H = [b^\ell \mathbf{I}_d| \dots |b^{k-1} \mathbf{I}_d]$. Now: $\mathbf{A}_t = [\mathbf{A}' | t \mathbf{G}_H - \mathbf{A}' \mathbf{R}]$, with $\mathbf{A}' = [\mathbf{I}_d | \mathbf{A}]$. Sampling \mathbf{v}' s.t. $\mathbf{A}_t \mathbf{v}' + \mathbf{e} = \mathbf{u}$ with \mathbf{e} small is sufficient.

$$\mathbf{A}_t \mathbf{v}' + \mathbf{e} = \mathbf{u} \iff [\mathbf{I}_d | \mathbf{A} | t \mathbf{G}_H - \mathbf{A}' \mathbf{R}] \underbrace{\begin{pmatrix} \mathbf{v}' + \begin{pmatrix} \mathbf{e} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix}}_{\text{exact preimage } \mathbf{v}} = \mathbf{u}$$

Jeudy, Sanders

³Chen, Genise, Mukherjee. Approximate trapdoors for lattices and smaller hash-and-sign signatures. Asiacrypt 2019.

Reduce Dimension with Approximate Trapdoor

Reduce gadget dimension with "approximate trapdoors" [CGM19]³ with truncation.

Note $\mathbf{G}_L = [b^0 \mathbf{I}_d| \dots |b^{\ell-1} \mathbf{I}_d]$, $\mathbf{G}_H = [b^\ell \mathbf{I}_d| \dots |b^{k-1} \mathbf{I}_d]$. Now: $\mathbf{A}_t = [\mathbf{A}' | t \mathbf{G}_H - \mathbf{A}' \mathbf{R}]$, with $\mathbf{A}' = [\mathbf{I}_d | \mathbf{A}]$. Sampling \mathbf{v}' s.t. $\mathbf{A}_t \mathbf{v}' + \mathbf{e} = \mathbf{u}$ with \mathbf{e} small is sufficient.

$$\mathbf{A}_t \mathbf{v}' + \mathbf{e} = \mathbf{u} \iff [\mathbf{I}_d | \mathbf{A} | t \mathbf{G}_H - \mathbf{A}' \mathbf{R}] \underbrace{\begin{pmatrix} \mathbf{v}' + \begin{pmatrix} \mathbf{e} \\ \mathbf{0} \\ 0 \end{pmatrix} \end{pmatrix}}_{\text{exact preimage } \mathbf{v}} = \mathbf{u}$$

Naive Approach: Compute $\mathbf{z} = (\mathbf{z}_L, \mathbf{z}_H)$ so that $t(\mathbf{G}_L \mathbf{z}_L + \mathbf{G}_H \mathbf{z}_H) = \mathbf{u} \mod q$, and return $\mathbf{v}' = \mathbf{L} \mathbf{z}_H$ as an approximate preimage of \mathbf{u} . The error is $\mathbf{e} = t \mathbf{G}_L \mathbf{z}_L$.

Jeudy, Sanders

³Chen, Genise, Mukherjee. Approximate trapdoors for lattices and smaller hash-and-sign signatures. Asiacrypt 2019.

Reduce Dimension with Approximate Trapdoor

Reduce gadget dimension with "approximate trapdoors" [CGM19]³ with truncation.

Note $\mathbf{G}_L = [b^0 \mathbf{I}_d| \dots |b^{\ell-1} \mathbf{I}_d]$, $\mathbf{G}_H = [b^\ell \mathbf{I}_d| \dots |b^{k-1} \mathbf{I}_d]$. Now: $\mathbf{A}_t = [\mathbf{A}' | t \mathbf{G}_H - \mathbf{A}' \mathbf{R}]$, with $\mathbf{A}' = [\mathbf{I}_d | \mathbf{A}]$. Sampling \mathbf{v}' s.t. $\mathbf{A}_t \mathbf{v}' + \mathbf{e} = \mathbf{u}$ with \mathbf{e} small is sufficient.

$$\mathbf{A}_t \mathbf{v}' + \mathbf{e} = \mathbf{u} \iff [\mathbf{I}_d | \mathbf{A} | t \mathbf{G}_H - \mathbf{A}' \mathbf{R}] \underbrace{\begin{pmatrix} \mathbf{v}' + \begin{bmatrix} \mathbf{e} \\ \mathbf{0} \\ 0 \end{bmatrix} \end{pmatrix}}_{\text{exact preimage } \mathbf{v}} = \mathbf{u}$$

Naive Approach: Compute $\mathbf{z} = (\mathbf{z}_L, \mathbf{z}_H)$ so that $t(\mathbf{G}_L \mathbf{z}_L + \mathbf{G}_H \mathbf{z}_H) = \mathbf{u} \mod q$, and return $\mathbf{v}' = \mathbf{L} \mathbf{z}_H$ as an approximate preimage of \mathbf{u} . The error is $\mathbf{e} = t \mathbf{G}_L \mathbf{z}_L$.

Can we handle the convolution as before with the additional error e?

Jeudy, Sanders

³Chen, Genise, Mukherjee. Approximate trapdoors for lattices and smaller hash-and-sign signatures. Asiacrypt 2019.

What About Security?

To prove \mathbf{v} does not leak \mathbf{R} , [CGM19] must be able to simulate \mathbf{e} (as it depends on \mathbf{p}). Requires knowing the distribution of \mathbf{e} , which causes two problems:

- \bullet Distribution of e difficult when u is arbitrary/adversarially chosen
- **2** Distribution of **e** depends on tag t, which must stay hidden (for security proof)

What About Security?

To prove \mathbf{v} does not leak \mathbf{R} , [CGM19] must be able to simulate \mathbf{e} (as it depends on \mathbf{p}). Requires knowing the distribution of \mathbf{e} , which causes two problems:

- \bullet Distribution of e difficult when u is arbitrary/adversarially chosen
- **2** Distribution of e depends on tag t, which must stay hidden (for security proof)

Proposed solution requires $\mathbf{u} = f(\mathbf{m})$ to be a *consistent, random, reprogrammable* function of \mathbf{m} . That is... a **random oracle**.

- ✓ Fine for hash-and-sign standard signatures,
- **X** Not for ZK-friendly signatures, where $f(\mathbf{m})$ is algebraic (e.g. $f(\mathbf{m}) = \mathbf{u}' + \mathbf{Dm}$).

What About Security?

- To prove \mathbf{v} does not leak \mathbf{R} , [CGM19] must be able to simulate \mathbf{e} (as it depends on \mathbf{p}). Requires knowing the distribution of \mathbf{e} , which causes two problems:
 - \bullet Distribution of e difficult when u is arbitrary/adversarially chosen
 - **2** Distribution of e depends on tag t, which must stay hidden (for security proof)
- Proposed solution requires $\mathbf{u} = f(\mathbf{m})$ to be a *consistent, random, reprogrammable* function of \mathbf{m} . That is... a **random oracle**.
- ✓ Fine for hash-and-sign standard signatures,
- **X** Not for ZK-friendly signatures, where $f(\mathbf{m})$ is algebraic (e.g. $f(\mathbf{m}) = \mathbf{u}' + \mathbf{Dm}$).

[CGM19] not applicable to the main use-cases of gadget samplers (u arbitrary)

Back To Square One

Use the perturbation to hide (some of) the error using convolution. Split \mathbf{R} into $(\mathbf{R}_1, \mathbf{R}_2)$ so that $[\mathbf{I}_d | \mathbf{A}] \mathbf{R} = \mathbf{R}_1 + \mathbf{A} \mathbf{R}_2$. The unperturbed preimage is

$$\mathbf{v} = egin{bmatrix} \mathbf{R_1} \\ \mathbf{R_2} \\ \mathbf{I}_{d(k-\ell)} \end{bmatrix} \mathbf{z}_H + egin{bmatrix} t\mathbf{G}_L \mathbf{z}_L \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

Back To Square One

Use the perturbation to hide (some of) the error using convolution. Split \mathbf{R} into $(\mathbf{R}_1, \mathbf{R}_2)$ so that $[\mathbf{I}_d | \mathbf{A}] \mathbf{R} = \mathbf{R}_1 + \mathbf{A} \mathbf{R}_2$. The unperturbed preimage is

$$\mathbf{v} = egin{bmatrix} \mathbf{R}_1 \ \mathbf{R}_2 \ \mathbf{I}_{d(k-\ell)} \end{bmatrix} \mathbf{z}_H + egin{bmatrix} t \mathbf{G}_L \mathbf{z}_L \ \mathbf{0} \ \mathbf{0} \end{bmatrix} = egin{bmatrix} t \mathbf{G}_L & \mathbf{R}_1 \ \mathbf{0} & \mathbf{R}_2 \ \mathbf{0} & \mathbf{I}_{d(k-\ell)} \end{bmatrix} egin{bmatrix} \mathbf{z}_L \ \mathbf{z}_H \end{bmatrix}$$

- \mathbf{K} \mathbf{G}_L large compared to $\mathbf{R}_i \Longrightarrow$ needs large perturbation
- Matrix not full rank when $\ell > 1 \Longrightarrow$ complex lattice smoothing analysis

Back To Square One

Use the perturbation to hide (some of) the error using convolution. Split \mathbf{R} into $(\mathbf{R}_1, \mathbf{R}_2)$ so that $[\mathbf{I}_d | \mathbf{A}] \mathbf{R} = \mathbf{R}_1 + \mathbf{A} \mathbf{R}_2$. The unperturbed preimage is

$$\mathbf{v} = \begin{bmatrix} \mathbf{R}_1 \\ \mathbf{R}_2 \\ \mathbf{I}_{d(k-\ell)} \end{bmatrix} \mathbf{z}_H + \begin{bmatrix} t \mathbf{G}_L \mathbf{z}_L \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} t \mathbf{G}_L & \mathbf{R}_1 \\ \mathbf{0} & \mathbf{R}_2 \\ \mathbf{0} & \mathbf{I}_{d(k-\ell)} \end{bmatrix} \begin{bmatrix} \mathbf{z}_L \\ \mathbf{z}_H \end{bmatrix}$$

$$\mathbf{Public Part} \begin{bmatrix} \mathbf{G}_L \\ \mathbf{I}_d \\ \mathbf{I}_{d} \end{bmatrix} \begin{bmatrix} \mathbf{I}_{d} & \mathbf{0} & \mathbf{R}_1 \\ \mathbf{0} & t \mathbf{I}_{d(\ell-1)} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{R}_2 \\ \mathbf{0} & \mathbf{0} & \mathbf{I}_{d(k-\ell)} \end{bmatrix} \mathbf{Private Part}$$

$$(\mathbf{L} \text{ full rank})$$

Perturb Lz and project with K afterwards.

Tailor the Perturbation: Elliptic Gaussians

We need to compensate the covariance $s_z^2 LL^T$

$$egin{aligned} \mathbf{\mathsf{LL}}^{T} &= egin{bmatrix} t^{2} \mathbf{\mathsf{I}}_{d} + \mathbf{\mathsf{R}}_{1} \mathbf{\mathsf{R}}_{1}^{T} & \mathbf{0} & \mathbf{\mathsf{R}}_{1} \mathbf{\mathsf{R}}_{2}^{T} & \mathbf{\mathsf{R}}_{1} \ \mathbf{0} & t^{2} \mathbf{\mathsf{I}}_{d(\ell-1)} & \mathbf{0} & \mathbf{0} \ \mathbf{\mathsf{R}}_{2} \mathbf{\mathsf{R}}_{1}^{T} & \mathbf{0} & \mathbf{\mathsf{R}}_{2} \mathbf{\mathsf{R}}_{2}^{T} & \mathbf{\mathsf{R}}_{2} \ \mathbf{\mathsf{R}}_{1}^{T} & \mathbf{0} & \mathbf{\mathsf{R}}_{2}^{T} & \mathbf{\mathsf{I}}_{d(k-\ell)} \end{bmatrix} \end{aligned}$$

Tailor the Perturbation: Elliptic Gaussians

We need to compensate the covariance $s_z^2 L L^T$

$$\mathbf{L}\mathbf{L}^T = egin{bmatrix} t^2 \mathbf{I}_d + \mathbf{R}_1 \mathbf{R}_1^T & 0 & \mathbf{R}_1 \mathbf{R}_2^T & \mathbf{R}_1 \ 0 & t^2 \mathbf{I}_{d(\ell-1)} & 0 & 0 \ \mathbf{R}_2 \mathbf{R}_1^T & 0 & \mathbf{R}_2 \mathbf{R}_2^T & \mathbf{R}_2 \ \mathbf{R}_1^T & 0 & \mathbf{R}_2^T & \mathbf{I}_{d(k-\ell)} \end{bmatrix}$$

• We aim for $S = diag(s_1^2, s_2^2, s_3^2, s_4^2)$. We expect to need

$$s_1 = O(s_z(t + \|\mathbf{R}_1\|_2)), \quad s_2 = O(s_zt), \quad s_3 = O(s_z\|\mathbf{R}_2\|_2) \quad \text{and} \quad s_4 = O(s_z).$$

Tailor the Perturbation: Elliptic Gaussians

We need to compensate the covariance $s_z^2 L L^T$

$$egin{aligned} \mathbf{L}\mathbf{L}^T = egin{array}{ccccc} t^2 \mathbf{I}_d + \mathbf{R}_1 \mathbf{R}_1^T & 0 & \mathbf{R}_1 \mathbf{R}_2^T & \mathbf{R}_1 \ 0 & t^2 \mathbf{I}_{d(\ell-1)} & 0 & 0 \ \mathbf{R}_2 \mathbf{R}_1^T & 0 & \mathbf{R}_2 \mathbf{R}_2^T & \mathbf{R}_2 \ \mathbf{R}_1^T & 0 & \mathbf{R}_2^T & \mathbf{I}_{d(k-\ell)} \ \end{pmatrix} \end{aligned}$$

• We aim for $S = diag(s_1^2, s_2^2, s_3^2, s_4^2)$. We expect to need

$$s_1 = O(s_z(t + \|\mathbf{R_1}\|_2)), \quad s_2 = O(s_zt), \quad s_3 = O(s_z\|\mathbf{R_2}\|_2) \quad \text{and} \quad s_4 = O(s_z).$$

We get $s_1 = \alpha \sqrt{t^2 + 3\|\mathbf{R}_1\|_2^2}$, $s_2 = \alpha t$, $s_3 = \alpha \sqrt{3}\|\mathbf{R}_2\|_2$ and $s_4 = \alpha \sqrt{3}$ are sufficient, with $\alpha = s_z^2/\sqrt{s_z^2 - \eta_\varepsilon(\mathbb{Z}^{dk})^2} \approx s_z$.

Can be adapted to general tags T (invertible $d \times d$ matrices). Relevant quantity becomes $\|T\|_2$ in the expressions of the s_i .

Our Truncated Sampler

We then take
$$\mathbf{A}_t = [\mathbf{A}'|t\mathbf{G}_H - \mathbf{A}'\mathbf{R}]$$
 and

$$\mathbf{S} = egin{bmatrix} \mathbf{s}_1^2 \mathbf{I}_d & & & & & & \\ & \mathbf{s}_2^2 \mathbf{I}_{d(\ell-1)} & & & & & \\ & & \mathbf{s}_3^2 \mathbf{I}_d & & & & \\ & & & & \mathbf{s}_4^2 \mathbf{I}_{d(k-\ell)} \end{bmatrix}$$

$$\bullet \ \mathbf{p} \longleftrightarrow \mathcal{D}_{\mathbb{Z}^{d(k+1)}, \sqrt{\mathbf{S}_{p}}}$$

$$\bullet \ \mathbf{w} \leftarrow t^{-1}(\mathbf{u} - \mathbf{A}_{t}\mathbf{K}\mathbf{p}) \bmod q$$

$$S_p = S - s_z^2 LL^T$$

- $\mathbf{z} \leftarrow \mathcal{D}_{\mathcal{L}_{q}^{\mathbf{w}}(\mathbf{G}), s_{z}}$ $\mathbf{v}' \leftarrow \mathbf{p} + \mathbf{L}\mathbf{z}$ $\mathbf{0} \text{ Output } \mathbf{v} = \mathbf{K}\mathbf{v}'$

verifies $\mathbf{A}_t \mathbf{v} = \mathbf{u} \mod a$

verifies $Gz = w \mod a$

Truncated Sampler

Can be adapted to general tags T (invertible $d \times d$ matrices).

Our Truncated Sampler

We then take $\mathbf{A}_t = [\mathbf{A}' | t\mathbf{G}_H - \mathbf{A}' \mathbf{R}]$ and

$$\mathbf{S} = \begin{bmatrix} s_1^2 \mathbf{I}_d & & & & \\ & s_2^2 \mathbf{I}_{d(\ell-1)} & & & & \\ & & s_3^2 \mathbf{I}_d & & & \\ & & & s_4^2 \mathbf{I}_{d(k-\ell)} \end{bmatrix}$$

 $S_p = S - s_z^2 L L^T$

 $\bullet \quad \mathbf{p} \hookleftarrow \mathcal{D}_{\mathbb{Z}^{d(k+1)}, \sqrt{\mathbf{S}_p}}$ $\bullet \quad \mathbf{w} \leftarrow t^{-1}(\mathbf{u} - \mathbf{A}_t \mathbf{K} \mathbf{p}) \bmod q$

verifies $Gz = w \mod a$

 $\bullet \ \mathbf{z} \hookleftarrow \mathcal{D}_{\mathcal{L}_{q}^{\mathsf{w}}(\mathsf{G}), s_{z}} \\ \bullet \ \mathbf{v}' \hookleftarrow \mathbf{p} + \mathbf{L}\mathbf{z} \\ \bullet \ \mathsf{Output} \ \mathbf{v} = \mathbf{K}\mathbf{v}'$

verifies $\mathbf{A}_t \mathbf{v} = \mathbf{u} \mod q$

Let us zoom in on the perturbation sampler

Can be adapted to general tags T (invertible $d \times d$ matrices).

Truncated

Sampler

Perturbation sampling is the most time-consuming. Let's optimize with precomputations.

$$\mathbf{S}_{\rho} = \begin{bmatrix} s_1^2 \mathbf{I} - s_z^2 (tt^* \mathbf{I}_d + \mathbf{R}_1 \mathbf{R}_1^*) & 0 & -s_z^2 \mathbf{R}_1 \mathbf{R}_2^* & -s_z^2 \mathbf{R}_1 \\ 0 & s_2^2 \mathbf{I} - s_z^2 tt^* \mathbf{I}_{d(\ell-1)} & 0 & 0 \\ -s_z^2 \mathbf{R}_2 \mathbf{R}_1^* & 0 & s_3^2 \mathbf{I} - s_z^2 \mathbf{R}_2 \mathbf{R}_2^* & -s_z^2 \mathbf{R}_2 \\ -s_z^2 \mathbf{R}_1^* & 0 & -s_z^2 \mathbf{R}_2^* & s_4^2 \mathbf{I} - s_z^2 \mathbf{I}_{d(k-\ell)} \end{bmatrix}$$

Perturbation sampling is the most time-consuming. Let's optimize with precomputations.

$$\mathbf{S}_{\rho} = \begin{bmatrix} s_1^2 \mathbf{I} - s_z^2 (tt^* \mathbf{I}_d + \mathbf{R}_1 \mathbf{R}_1^*) & \mathbf{0} & -s_z^2 \mathbf{R}_1 \mathbf{R}_2^* & -s_z^2 \mathbf{R}_1 \\ & \mathbf{0} & s_2^2 \mathbf{I} - s_z^2 tt^* \mathbf{I}_{d(\ell-1)} & \mathbf{0} & \mathbf{0} \\ & & \\ -s_z^2 \mathbf{R}_2 \mathbf{R}_1^* & \mathbf{0} & s_3^2 \mathbf{I} - s_z^2 \mathbf{R}_2 \mathbf{R}_2^* & -s_z^2 \mathbf{R}_2 \\ & -s_z^2 \mathbf{R}_1^* & \mathbf{0} & -s_z^2 \mathbf{R}_2^* & s_4^2 \mathbf{I} - s_z^2 \mathbf{I}_{d(k-\ell)} \end{bmatrix}$$

1 Part in s_2^2 can be independently sampled (no precomputation needed)

Perturbation sampling is the most time-consuming. Let's optimize with precomputations.

$$\mathbf{S}_{\rho} = \begin{bmatrix} s_1^2 \mathbf{I} - s_z^2 (tt^* \mathbf{I}_d + \mathbf{R}_1 \mathbf{R}_1^*) & 0 & -s_z^2 \mathbf{R}_1 \mathbf{R}_2^* & -s_z^2 \mathbf{R}_1 \\ 0 & s_2^2 \mathbf{I} - s_z^2 tt^* \mathbf{I}_{d(\ell-1)} & 0 & 0 \\ -s_z^2 \mathbf{R}_2 \mathbf{R}_1^* & 0 & s_3^2 \mathbf{I} - s_z^2 \mathbf{R}_2 \mathbf{R}_2^* & -s_z^2 \mathbf{R}_2 \\ -s_z^2 \mathbf{R}_1^* & 0 & -s_z^2 \mathbf{R}_2^* & s_4^2 \mathbf{I} - s_z^2 \mathbf{I}_{d(k-\ell)} \end{bmatrix}$$

- Part in s_2^2 can be independently sampled (no precomputation needed)
- 2 Part in s_3^2 and s_4^2 independent of t. Sampling material precomputed at key generation

Perturbation sampling is the most time-consuming. Let's optimize with precomputations.

$$\mathbf{S}_{
ho} = egin{bmatrix} s_1^2 \mathbf{I} - s_z^2 (tt^* \mathbf{I}_d + \mathbf{R}_1 \mathbf{R}_1^*) & 0 & -s_z^2 \mathbf{R}_1 \mathbf{R}_2^* & -s_z^2 \mathbf{R}_1 \ 0 & s_2^2 \mathbf{I} - s_z^2 tt^* \mathbf{I}_{d(\ell-1)} & 0 & 0 \ -s_z^2 \mathbf{R}_2 \mathbf{R}_1^* & 0 & s_3^2 \mathbf{I} - s_z^2 \mathbf{R}_2 \mathbf{R}_2^* & -s_z^2 \mathbf{R}_2 \ -s_z^2 \mathbf{R}_1^* & 0 & -s_z^2 \mathbf{R}_2^* & s_4^2 \mathbf{I} - s_z^2 \mathbf{I}_{d(k-\ell)} \end{bmatrix}$$

- 1 Part in s_2^2 can be independently sampled (no precomputation needed)
- 2 Part in s_3^2 and s_4^2 independent of t. Sampling material precomputed at key generation
- 3 Part in s_1^2 depends on t. Schur complements must be *computed online*. But only d dimensions out of d(k+1)

Signature in the Standard Model

P: R₁, R₂
P: B = R₁ + AR₂
Q: t, v, v₃
R: m
PP: (A, A₃, D, u', G_H = [b^ℓI| ... |b^{k-1}I])

d

d

d

L

d

Algebraic verification
Handles arbitrary messages
Security on SIS/LWE
Shorter signatures (6.7 KB → 4.8 KB)

Smaller witness dimension:
$$2d + k(d + 1)$$
 → $2d + (k - \ell)(d + 1)$

Signature in the Standard Model: Performance

For k = 5:

	pk	sig	Sec. (Core-SVP)
$\ell = 0$	47.5 кв	6.7 кв	126
$\ell = 1$	38.0 кв	5.9 кв	123
$\ell=2$	28.5 кв	4.8 кв	121

Signature in the Standard Model: Performance

For k = 5:

	pk	sig	Sec. (Core-SVP)
$\ell = 0$	47.5 кв	6.7 кв	126
$\ell = 1$	38.0 кв	5.9 кв	123
$\ell=2$	28.5 кв	4.8 кв	121

Procedure	Average Time ($\ell=0$)	Average Time ($\ell=2$)
SamplePerturb	52.0 ms	80.2 ms
SampleGadget	1.8 ms	1.8 ms
SamplePre	56.5 ms	83.9 ms
Sign	56.9 ms	84.3 ms
Verify	1.1 ms	0.7 ms

Small overhead due to online covariance computations

Timings from proof-of-concept implementation for comparison purposes. Absolute timings can be vastly improved with an optimized implementation

Applications for Privacy

Example improvements in group signatures [LNPS21]⁴ [LNP22]⁵, anonymous credentials [AGJ⁺24]⁶, blind signatures [JS25]⁷

	Original Size	Ours
Group Signature (gsig)	86.8 кв	75.7 кв
Anonymous Credentials (show)	60.8 кв	54.0 кв
Blind Signature (bsig)	41.1 кв	36.3 кв

(Full comparison in the paper (2024/1952), with different values of ℓ)

⁷Jeudy, Sanders, Improved Lattice Blind Signatures from Recycled Entropy, Crypto 2025

14/15

⁴Lyubashevsky, Nguyen, Plançon, Seiler. Shorter Lattice-Based Group Signatures via "Almost Free" Encryption and Other Optimizations. Asiacrypt 2021

⁵Lyubashevsky, Nguyen, Plançon. Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler and More General. Crypto 2022

⁶ Argo, Günevsu, Jeudy, Land, Roux-Langlois, Sanders, Practical Post-Quantum Signatures for Privacy, CCS 2024

Wrapping Up

- Preimage Sampler with Truncated Gadgets in the worst case
 - > Unlocks truncated gadgets in their main applications
 - > Same structure: drop-in replacement to full gadget sampler [MP12]
 - > Reduced dimension: immediate improvement in many privacy-driven applications
- ? Perspectives
 - More efficient perturbation sampler?
 - General continuous of the parameter selection (dedicated backend, parallelization, parameter selection)

Wrapping Up

- ✓ Preimage Sampler with Truncated Gadgets in the worst case
 - > Unlocks truncated gadgets in their main applications
 - > Same structure: drop-in replacement to full gadget sampler [MP12]
 - > Reduced dimension: immediate improvement in many privacy-driven applications
- ? Perspectives
 - More efficient perturbation sampler?
 - General continuous of the parameter selection (dedicated backend, parallelization, parameter selection)

Thank You!

References i

S. Argo, T. Güneysu, C. Jeudy, G. Land, A. Roux-Langlois, and O. Sanders. **Practical Post-Quantum Signatures for Privacy.**In CCS, 2024.

Y. Chen, N. Genise, and P. Mukherjee.

Approximate Trapdoors for Lattices and Smaller Hash-and-Sign Signatures. In ASIACRYPT. 2019.

C. Jeudy and O. Sanders.

Improved Lattice Blind Signatures from Recycled Entropy.

In CRYPTO, 2025.

V. Lyubashevsky, N. K. Nguyen, and M. Plançon.

Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General.

CRYPTO, 2022.

V. Lyubashevsky, N. K. Nguyen, M. Plançon, and G. Seiler.

Shorter Lattice-Based Group Signatures via "Almost Free" Encryption and Other Optimizations.

In ASIACRYPT, 2021.

D. Micciancio and C. Peikert.

Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller.

In EUROCRYPT, 2012.