Improved Lattice Blind Signatures from Recycled Entropy

Crypto'25 - August 20th 2025

Corentin Jeudy¹, Olivier Sanders¹

¹ Orange, Applied Crypto Group

Digital Signatures

Digital Signatures

A

Message Tracing: Signer can trace user based on signed message Signature Tracing: Signer can trace user based on emitted signatures

Blind Signatures in a Nutshell

Requirements: Blindness (a signature can't be traced back to its issuance), and One-More Unforgeability (can't produce more valid blind signatures than was lawfully emitted).

Blind Signatures in a Nutshell

Requirements: Blindness (a signature can't be traced back to its issuance), and One-More Unforgeability (can't produce more valid blind signatures than was lawfully emitted).

Lattice Assumption and Trapdoors

$\mathsf{ISIS}_{m,d,q,\beta}$

Given $(\mathbf{A}, \mathbf{u}) \leftarrow U(R_q^{d \times m + 1})$, find $\mathbf{x} \in R^m$ such that $\mathbf{A}\mathbf{x} = \mathbf{u} \mod q$, $\|\mathbf{x}\| \le \beta$.

When $\mathbf{u} = \mathbf{0}$, we ask $\mathbf{x} \neq \mathbf{0}$.

<u>Decision:</u> Distinguish $Ax \mod q$ for a random short x from a random $u \longrightarrow LWE$.

Lattice Assumption and Trapdoors

$\mathsf{ISIS}_{m,d,q,\beta}$

Given $(\mathbf{A}, \mathbf{u}) \leftarrow U(R_q^{d \times m+1})$, find $\mathbf{x} \in R^m$ such that $\mathbf{A}\mathbf{x} = \mathbf{u} \mod q$, $\|\mathbf{x}\| \leq \beta$.

When $\mathbf{u} = \mathbf{0}$, we ask $\mathbf{x} \neq \mathbf{0}$.

Decision: Distinguish $Ax \mod q$ for a random short x from a random $u \longrightarrow LWE$.

Gadget-based trapdoors [MP12]¹ lead to signatures that smoothly interact with NIZKs

[MP12]: Matrices of the form

$$A_t = [A \mid tG - AR]$$

with $\mathbf{A} = [\mathbf{I} | \mathbf{A}']$, \mathbf{A}' uniform, t tag, \mathbf{R} trapdoor, $\mathbf{G} = [b^0 \mathbf{I}] \dots | b^{k-1} \mathbf{I}]$ public gadget for $k = \log_b q$.

Sampler: Allows to sample random short v s.t. $A_t v = u \mod q$ for any u, without leaking R.

$$\longrightarrow$$
 notation: $\mathbf{v} = \text{SampPre}(\mathbf{R}, \mathbf{A}_t, \mathbf{u})$

¹Micciancio, Peikert, Trapdoors for Lattices; Simpler, Tighter, Faster, Smaller, Eurocrypt 2012

Lattice-Based Zero-Knowledge Proofs in a Nutshell

We use the [LNP22]² lattice zero-knowledge proof framework.

$$\bigcirc$$
 Proves quadratic equations modulo q , e.g.,

$$[\mathbf{A}|\mathbf{t}\mathbf{G} - \mathbf{B}]\mathbf{w} = \mathbf{u} \mod q$$
, or $\langle \mathbf{w}, \mathbf{w} \rangle = B^2 \mod q$ (i.e., $\|\mathbf{w}\|_2^2 = B^2 \mod q$)

Proves
$$\ell_2$$
 norms exactly by lifting over \mathbb{Z} : $\langle \mathbf{w}, \mathbf{w} \rangle = B^2 \mod q \Longrightarrow \|\mathbf{w}\|_2 = B$ if $q > \Omega(B^2)$

Jeudy, Sanders

² Lyubashevsky, Ngyuen, Plançon. Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General. Crypto 2022

Lattice-Based Zero-Knowledge Proofs in a Nutshell

We use the [LNP22]² lattice zero-knowledge proof framework.

- Proves quadratic equations modulo q, e.g.,
 - $[\mathbf{A}|\mathbf{t}\mathbf{G} \mathbf{B}]\mathbf{w} = \mathbf{u} \mod q$, or $\langle \mathbf{w}, \mathbf{w} \rangle = B^2 \mod q$ (i.e., $\|\mathbf{w}\|_2^2 = B^2 \mod q$)
- Proves ℓ_2 norms exactly by lifting over \mathbb{Z} : $\langle \mathbf{w}, \mathbf{w} \rangle = B^2 \mod q \Longrightarrow \|\mathbf{w}\|_2 = B$ if $q > \Omega(B^2)$

Proof π contains many elements including

- \bigcirc Masked opening of the witness $\mathbf{z} = \mathbf{y} + c\mathbf{w}$
 - → Size depends linearly on dimension of w
- Commitments, all-but-one-coefficient masks which are uniform-looking modulo q
 - \rightarrow Size depends on how big q is

²Lyubashevsky, Ngyuen, Plançon. Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General. Crypto 2022

Lattice-Based Zero-Knowledge Proofs in a Nutshell

We use the [LNP22]² lattice zero-knowledge proof framework.

- Proves quadratic equations modulo q, e.g.,
 - $[\mathbf{A}|t\mathbf{G} \mathbf{B}]\mathbf{w} = \mathbf{u} \mod q$, or $\langle \mathbf{w}, \mathbf{w} \rangle = B^2 \mod q$ (i.e., $\|\mathbf{w}\|_2^2 = B^2 \mod q$)
- Proves ℓ_2 norms exactly by lifting over \mathbb{Z} : $\langle \mathbf{w}, \mathbf{w} \rangle = B^2 \mod q \Longrightarrow \|\mathbf{w}\|_2 = B$ if $q > \Omega(B^2)$

Proof π contains many elements including

- \bigcirc Masked opening of the witness $\mathbf{z} = \mathbf{y} + c\mathbf{w}$
 - → Size depends linearly on dimension of w
- ullet Commitments, all-but-one-coefficient masks which are uniform-looking modulo q
 - \rightarrow Size depends on how big q is

Smaller dimension \Longrightarrow Smaller proof size

Smaller modulus ⇒ Smaller proof size

Jeudy, Sanders

²Lyubashevsky, Ngyuen, Plancon, Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General, Crypto 2022

Step **9** proves the commitment and encryption-to-the-sky are well-formed.

Step \odot proves the partial signature verification equation while hiding $(t, \mathbf{v}, \mathbf{r})$ but revealing m:

$$\mathbf{A_{t}v} - \mathbf{Cr} = \mathbf{u} + \mathbf{d} \cdot m \mod q$$

 $\mathbf{t} \in \mathcal{T}, \quad \|(\mathbf{v}, \mathbf{r})\|_{2} \text{ small}$

Reducing the Witness Dimension

- Witness in π_2 includes the randomness \mathbf{r} , increasing the proof size.
- We can reuse $\mathbf{A} = [\mathbf{I}_d | \mathbf{A}']$ from \mathbf{A}_t with uniform \mathbf{A}' to keep hiding commitment, but merge \mathbf{r} to the top part of \mathbf{v} .

Reducing the Witness Dimension

Witness in π_2 includes the randomness \mathbf{r} , increasing the proof size.

We can reuse $\mathbf{A} = [\mathbf{I}_d | \mathbf{A}']$ from \mathbf{A}_t with uniform \mathbf{A}' to keep hiding commitment, but merge \mathbf{r} to the top part of \mathbf{v} .

Vector $\mathbf{w} = \mathbf{v} - [\mathbf{r}|\mathbf{0}]$ slightly larger in norm, but reduces witness dimension. Equation becomes

 $\mathbf{A}_{\bullet}\mathbf{w} = \mathbf{u} + \mathbf{d} \cdot \mathbf{m}$

Randomness Injection for Smaller Blind Signature

- ? r is small (ternary). Can we inject more randomness without increasing the norm of w too much?
- © Compute $\mathbf{v} = \mathbf{A}(K\mathbf{r}_{hid} + \mathbf{r}_{mask}) + \mathbf{d} \cdot m$, where \mathbf{r}_{hid} is small (ternary) to keep a hiding commitment, and \mathbf{r}_{mask} as large as possible to mask the top of \mathbf{v} in the end. Base K lifts \mathbf{r}_{hid} to the high bits of $\mathbf{r} = K\mathbf{r}_{hid} + \mathbf{r}_{mask}$.

Randomness Injection for Smaller Blind Signature

- ? r is small (ternary). Can we inject more randomness without increasing the norm of w too much?
- Compute $\mathbf{v} = \mathbf{A}(K\mathbf{r}_{hid} + \mathbf{r}_{mask}) + \mathbf{d} \cdot m$, where \mathbf{r}_{hid} is small (ternary) to keep a hiding commitment, and \mathbf{r}_{mask} as large as possible to mask the top of \mathbf{v} in the end. Base K lifts \mathbf{r}_{hid} to the high bits of $\mathbf{r} = K\mathbf{r}_{hid} + \mathbf{r}_{mask}$.

 $\mathbf{w}_L = \mathrm{Low}(\mathbf{v}_1, K) + \mathbf{r}_{mask} \mod K$, which can be revealed if \mathbf{r}_{mask} uniform modulo K. Reduces witness norm as $\|\mathbf{w}_H\|_2 \approx \|\mathbf{w}\|_2 / K$. Reduces the proof modulus and thus proof size.

Making it 3-Round for Smaller Sizes

We can push the idea further to hide \mathbf{v}_2 as well. But the user needs to know the tag t that will be used, making our scheme 3-round.

Making it 3-Round for Smaller Sizes

We can push the idea further to hide \mathbf{v}_2 as well. But the user needs to know the tag t that will be used, making our scheme 3-round.

Making it 3-Round for Smaller Sizes

We can push the idea further to hide \mathbf{v}_2 as well. But the user needs to know the tag t that will be used, making our scheme 3-round.

A

Albeit 3-round, we are not subject to attacks on Schnorr-like 3-round blind signatures.

Performance Comparison

	Assumptions	Round	iss. NIZK	transcript	bsig
[AKSY22] ³	Std. + One-More-ISIS	2	-	1.37 KB	45.19 KB
[dPK22] ⁴	Std.	2	Algebraic	932 KB	102.6 KB
[BLNS23] ⁵	Std.	2	General	60 KB	22 KB
Ours	Std.	3	Algebraic	59.63 KB	41.12 KB

Further optimization: Replace gagdet sampler with recent truncated gadget sampler of [JS24]⁶

- → No impact on security
- ightharpoonup Smaller dimensional witness gives: $|transcript| \approx 53.21 \text{ KB}$, and $|bsig| \approx 36.28 \text{ KB}$.

²Agrawal, Kirshanova, Stehlé, Yadav. Practical, Round-Optimal Lattice-Based Blind Signatures. CCS 2022

³del Pino, Katsumata. A New Framework for More Efficient Round-Optimal Lattice-Based (Partially) Blind Signature via Trapdoor Sampling. Crypto 2022

⁴Beullens, Lyubashevsky, Nguyen, Seiler. Lattice-Based Blind Signatures: Short, Efficient, and Round-Optimal. CCS 2023

 $^{^6}$ Jeudy, Sanders. Worst-Case Lattice Sampler with Truncated Gadgets and Applications. ePrint 2024/1952

Implementation Performance

Verification: 91 ms (verification of π_2 (\approx 90 ms) and that \mathbf{w}_L is in the correct interval (\approx 1 ms))

Full blind signature generation pprox 1 second (non-optimized PoC implementation)

Wrapping Up

A new Lattice Blind Signature

- > Based on standard post-quantum assumptions (M-SIS, M-LWE)
- > Efficient issuance based only on algebraic proofs (no general-purpose NIZKs)
- > Competitive sizes due to our entropy recycling technique
- > 3-round but first round does not involve maintaining secret data (so it's more 2-ish)

? Perspectives

- More efficient proof systems for lattice relations?
- Optimized implementation (dedicated backend, parallelization, parameter selection)

⁷Lyubashevsky, Seiler, Steuer. The LaZer Library: Lattice-Based Zero-Knowledge and Succinct Proofs for Quantum-Safe Privacy. CCS 2024

Wrapping Up

A new Lattice Blind Signature

- > Based on standard post-quantum assumptions (M-SIS, M-LWE)
- > Efficient issuance based only on algebraic proofs (no general-purpose NIZKs)
- > Competitive sizes due to our entropy recycling technique
- > 3-round but first round does not involve maintaining secret data (so it's more 2-ish)

? Perspectives

- More efficient proof systems for lattice relations?
- Optimized implementation (dedicated backend, parallelization, parameter selection)

Thank You!

⁷ Lyubashevsky, Seiler, Steuer. The LaZer Library: Lattice-Based Zero-Knowledge and Succinct Proofs for Quantum-Safe Privacy. CCS 2024

S. Agrawal, E. Kirshanova, D. Stehlé, and A. Yadav.

Practical, Round-Optimal Lattice-Based Blind Signatures.

In CCS, 2022.

J. Bootle, V. Lyubashevsky, N. K. Nguyen, and A. Sorniotti.

A Framework for Practical Anonymous Credentials from Lattices.

In CRYPTO, 2023.

R. del Pino and S. Katsumata.

A New Framework for More Efficient Round-Optimal Lattice-Based (Partially) Blind Signature via Trapdoor Sampling.

In CRYPTO, 2022.

C. Jeudy and O. Sanders.

Worst-Case Lattice Sampler with Truncated Gadgets and Applications.

IACR Cryptol. ePrint Arch., page 1952, 2024.

V. Lyubashevsky, N. K. Nguyen, and M. Plançon.

Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General.

CRYPTO, 2022.

V. Lyubashevsky, G. Seiler, and P. Steuer.

The LaZer Library: Lattice-Based Zero Knowledge and Succinct Proofs for Quantum-Safe Privacy.

In CCS, 2024.

D. Micciancio and C. Peikert.

Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller.

In EUROCRYPT, 2012.