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Joint work with Sven Argo, Tim Güneysu, Georg Land, Adeline Roux-Langlois, Olivier Sanders

C. Jeudy Practical Post-Quantum Signatures for Privacy March 03rd, 2025 1/21



Signatures: Physical and Digital

User

Signer Verifiers

✓ p

? Allows to certify digital data, and later prove its authenticity. What more do we need?
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Example: Age Control

Temporarily showing an ID document to attest you are of age is not really a privacy issue.

User Merchant

Age > 18 ?

Sending an ID document or credit card to a website is more permanent. It can store, share, exploit.

Requires trust.

User Website

Age > 18 ?

or

Identity theft, phishing,

fraud, etc.
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Adding Privacy

User

Signer Verifiers

✓ p

Private Data Leak

$Commitment π ZK Proof that is a

valid signature on

.
No control over the disclosed information: Verifiers (and attacker) learn everything

Simple but not suited for privacy
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Adding Privacy: Signature with Efficient Protocols (SEP)

User

Signer Verifiers

#

✓ p

π

Private Data Safe

$Commitment π ZK Proof that is a

valid signature on

✓
Full control of user information: Selective disclosure to verifiers (and attacker)

But need for more complex tools: commitment, specific signature, ZKP
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An Interesting Versatility

Many technical solutions answering concrete privacy use cases can be built from this blueprint.

4

Anonymous Credentials

²

Group Signatures

6

Blind Signatures

Õ

E-Cash

• • •

All these need some signature with some kind of anonymity

Industrial Interest: EPID and DAA deployed in billions of devices (TPM, Intel SGX).

EPID, DAA, Group/Blind signatures in ISO/IEC standards (20008, 18370)

Most solutions broken by Quantum Computers.

Need Post-Quantum alternatives
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Outline

Background

1. Lattices: Assumptions,

Trapdoors & Samplers

Construction

2. Signature with Efficient Protocols

Performance

3. Anonymous Credentials Use-Case

Sizes & Timings
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Lattices: Assumptions, Trapdoors & Samplers



You Said Lattice?

Euclidean Lattice

L = B x ; x ∈ Zn
with basis B ∈ Rn×n

x0

x1

A(x0 − x1) = u mod q

CVPx0 Given a target x0, find x1 ∈ L that minimizes ∥x0 − x1∥

Given A ∈ Rd×m
q describing the lattice

L⊥
q (A) = {x1 ∈ Rm : Ax1 = 0 mod q}

and x0 such that Ax0 = u mod q, solve CVPx0 on L⊥
q (A). This is ISIS!
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Lattice Assumption and Trapdoors

ISISm,d,q,β

Given (A, u)←↩ U(Rd×m+1
q ), find x ∈ Rm such that Ax = u mod q, ∥x∥ ≤ β.

When u = 0, we ask x ̸= 0.

Decision: Distinguish Ax mod q for a random short x from a random u.

· Statistical Hardness − Leftover Hash Lemma

· Computational Hardness − Learning With Errors (LWE)
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When u = 0, we ask x ̸= 0.

Decision: Distinguish Ax mod q for a random short x from a random u.

· Statistical Hardness − Leftover Hash Lemma

· Computational Hardness − Learning With Errors (LWE)

ISIS is hard unless we know a trapdoor R on A.

³ Ability to invert fA : x 7→ Ax mod q over bounded domain

³ Ability to randomize preimage finding without leaking R $ Preimage Sampling

³ Design secure signatures [GPV08]1: Find short x such that Ax = H(m) mod q

1Gentry, Peikert, Vaikuntanathan. Trapdoors for Hard Lattices and New Cryptographic Constructions. STOC 2008.
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Approaches to Gadget-Based Samplers

Micciancio-Peikert trapdoors [MP12]: Family of matrices A such that

AR′ = TG mod q, with R′ =

[
R

I

]
, i.e. A = [A|TG− AR] and A = [I|A′]

with G = I⊗ [b0| . . . |bk−1], and k = logb q ø R ø B = AR

(base-b decomposition) U T (= tI)

Naive Approach: Compute z so that TGz = u mod q, and return R′z as preimage of u

p Collecting many preimages will leak R...

_ Add mask p: preimages v = p+ R′z =

[
p1 + Rz

p2 + z

]
(and gadget inversion on u− Ap instead of u)
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How to Choose the Mask? Convolution

_ Compensate statistical leakage by adapting covariance of p [MP12]. Only for z and p Gaussian

+ '

p R′z v

s2I− s2zR
′R′T s2zR

′R′T
s2I

Quality: s ≳ sz

√
1 +∥R∥22 with sz ≈ ηε(L⊥

q (G)).
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Lattice Signatures for Privacy: Versatile &

Practical

# π

✓p



Falcon/Dilithium with Efficient Protocols?

Let’s see if we can use Falcon to construct Signatures with Efficient Protocols

v1 + hv2 = H(m)

p Need efficient ZKP of verification. Hash evaluation (H(m)) is impractical to prove
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Falcon/Dilithium with Efficient Protocols?

Same goes for Dilithium or Micciancio-Peikert signatures

ø : R ø : B = AR : v : m PP : (A,GH = I ⊗ [bℓ| . . . |bk−1])

A G − B v

.

.

.

= H(m)

p Need efficient ZKP of verification. Hash evaluation (H(m)) is impractical to prove
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Falcon/Dilithium with Efficient Protocols?

Where to put the message if not in the syndrome H(m)?

A t(m)G − B v

.

.

.

= u

_ Tag function of the message [dPLS18]2 (group sig), [dPK22]3 (blind sig)

2del Pino, Lyubashevsky, Seiler. Lattice-Based Group Signatures and Zero-Knowledge Proofs of Automorphism Stability. CCS 2018

3del Pino, Katsumata. A New Framework For More Efficient Round-Optimal Lattice-Based (Partially) Blind Signature via Trapdoor Sampling. Crypto 2022
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Falcon/Dilithium with Efficient Protocols?

Where to put the message if not in the syndrome H(m)?

A v

.

.

.

= u + D · · · · bin D0

 r + D1 · · · m

.

.

.



_ Commitment to the message using Chameleon hash [LLM+16]2

2Libert, Ling, Mouhartem, Nguyen, Wang. Signature Schemes with Efficient Protocols and Dynamic Group Signatures from Lattice Assumptions. Asiacrypt 2016
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Our Lattice Signature with Efficient Protocols

Commitment, Convolution sampler, Elements t and u to prove security on SIS

ø : R ø : B = AR : t, v −
[
r

0

]
: m PP : (A,D, u,G = I ⊗ [b0| . . . |bk−1])

A tG − B v

.

.

.

= u + A r

.

.

.

+ D · · · m

.

.

.

p No random oracle. Needs different arguments for security proof

✓ Algebraic verification, handles arbitrary messages, security on standard assumptions
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More Practical but Not Yet Practical Enough...

Model Assumptions |sig| |π|

[LLM+16] Adaptive SIS/LWE 8617 KB 671581 KB

Ours [JRS23] Adaptive M-SIS/M-LWE 289 KB 660 KB

• Relax security model [LLLW23]2: Selective security (adversary tells what/how they will attack)

• Relax security assumptions [BLNS23]3: Stronger assumptions (optionally interactive)

• Optimize for implementation [BCR+23]4: Larger sizes

? How to optimize?

2Lai, Liu, Lysyanskaya, Wang. Lattice-based Commit-Transferrable Signatures and Applications to Anonymous Credentials. ePrint 2023/766

3Bootle, Lyubashevsky, Nguyen, Sorniotti. A Framework for Practical Anonymous Credentials from Lattices. Crypto 2023

4Blazy, Chevalier, Renaut, Ricosset, Sageloli, Senet. Efficient Implementation of a Post-Quantum Anonymous Credential Protocol. ARES 2023
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More Practical but Not Yet Practical Enough...

Model Assumptions |sig| |π|

[LLM+16] Adaptive SIS/LWE 8617 KB 671581 KB

Ours [JRS23] Adaptive M-SIS/M-LWE 289 KB 660 KB

[LLLW23] Selective M-SIS/M-LWE 118 KB 193 KB

[BLNS23]-1 Adaptive NTRU-ISISf 72 KB 243 KB

[BLNS23]-2 Adaptive Int-NTRU-ISISf 3.5 KB 62 KB

[BCR+23] Adaptive M-SIS/M-LWE - 1878 KB

• Relax security model [LLLW23]2: Selective security (adversary tells what/how they will attack)

• Relax security assumptions [BLNS23]3: Stronger assumptions (optionally interactive)

• Optimize for implementation [BCR+23]4: Larger sizes

? How to optimize sizes and timings while keeping strong well-studied security?

2Lai, Liu, Lysyanskaya, Wang. Lattice-based Commit-Transferrable Signatures and Applications to Anonymous Credentials. ePrint 2023/766

3Bootle, Lyubashevsky, Nguyen, Sorniotti. A Framework for Practical Anonymous Credentials from Lattices. Crypto 2023

4Blazy, Chevalier, Renaut, Ricosset, Sageloli, Senet. Efficient Implementation of a Post-Quantum Anonymous Credential Protocol. ARES 2023
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Dive in the Security Proof: Computational Trapdoor Problem

➊ Change B = AR into B = AR+ t⋆G with hidden guess t⋆ on tag returned by A
➋ Solve SIS instance A using the forgery (t⋆, v⋆) on fresh message m⋆.

Step ➋ [A|t⋆G− B]v⋆ = u+Dm⋆ ⇐⇒ A((v⋆1 − vC1 ) + R(v⋆2 − vC2 )− S(m⋆ −m)) = 0

Step ➊

Sequence to change B

AR U U+ t⋆G AR+ t⋆G

✓

Trapdoor

p

No trapdoor or ROM
(cannot answer queries)

✓

Trapdoor
(except for t⋆)

Statistical

“Unplayable” game but AR is statistically

close to AR+ t⋆G

Computational

U is an LWE challenge. Unplayable game...

but we have to play it. Not poly-time
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Partial Trapdoor Switching

_ Use two trapdoors. R′ used when B is uniform

At =
[
A|tG− B| G− AR′

] Second trapdoor slot
Dim: d × kd
(k = logb q)

� We can do better by changing B progressively. First, split

G = Id ⊗ [b0| . . . |bk−1] = [G1 | . . . | Gd ] with Gi = ei ⊗ [b0| . . . |bk−1]

R = [R1 | . . . | Rd ] where Ri has k columns

tG− B =
[
tG1 − AR1 | . . . | tGi − ARi | . . . | tGd − ARd

]
tGi −Ui handled with Gi − AR′

i

tGi − (ARi + t⋆Gi )
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Partial Trapdoor Switching

� We can do better by changing B progressively

Public Key: B = [AR1 | AR2 | . . . | ARd ]

Extra Slot: A3 ∼ Uniform

Effective Trapdoor: R = [R1 | R2 | . . . | Rd ]

Effective Tag: T = diag(t, t, . . . , t)

G1,0

G1,1

A3 → G1 − A′
3

G1,2

A′
3 → AR′

1

G1,3

signatures use R′
1

G1,4

AR1 → U1

G1,5

U1 → U′
1 + t⋆G1

G1,6

U′
1 → AR1

G1,7

signatures use R1

G1,8

AR′
1 → A′

3

G1,9

G1 − A′
3 → A3

Initial Game

C. Jeudy Practical Post-Quantum Signatures for Privacy March 03rd, 2025 15/21



Partial Trapdoor Switching

� We can do better by changing B progressively

Public Key: B = [AR1 | AR2 | . . . | ARd ]

Extra Slot: A3 = G1 − A′
3 (A′

3 ∼ Unif.)

Effective Trapdoor: R = [R1 | R2 | . . . | Rd ]

Effective Tag: T = diag(t, t, . . . , t)

G1,0

G1,1

A3 → G1 − A′
3

G1,2

A′
3 → AR′

1

G1,3

signatures use R′
1

G1,4

AR1 → U1

G1,5

U1 → U′
1 + t⋆G1

G1,6

U′
1 → AR1

G1,7

signatures use R1

G1,8

AR′
1 → A′

3

G1,9

G1 − A′
3 → A3

Hide partial gadget in A3: Identical
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Partial Trapdoor Switching

� We can do better by changing B progressively

Public Key: B = [AR1 | AR2 | . . . | ARd ]

Extra Slot: A3 = G1 − AR′
1

Effective Trapdoor: R = [R1 | R2 | . . . | Rd ]

Effective Tag: T = diag(t, t, . . . , t)

G1,0

G1,1

A3 → G1 − A′
3

G1,2

A′
3 → AR′

1

G1,3

signatures use R′
1

G1,4

AR1 → U1

G1,5

U1 → U′
1 + t⋆G1

G1,6

U′
1 → AR1

G1,7

signatures use R1

G1,8

AR′
1 → A′

3

G1,9

G1 − A′
3 → A3

Hide short relation in A3: LWE
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Partial Trapdoor Switching

� We can do better by changing B progressively

Public Key: B = [AR1 | AR2 | . . . | ARd ]

Extra Slot: A3 = G1 − AR′
1

Effective Trapdoor: R = [R′
1 | R2 | . . . | Rd ]

Effective Tag: T = diag(1, t, . . . , t)

G1,0

G1,1

A3 → G1 − A′
3

G1,2

A′
3 → AR′

1

G1,3

signatures use R′
1

G1,4

AR1 → U1

G1,5

U1 → U′
1 + t⋆G1

G1,6

U′
1 → AR1

G1,7

signatures use R1

G1,8

AR′
1 → A′

3

G1,9

G1 − A′
3 → A3

Sample signatures with R′
1 instead of R1: Trapdoor switching lemma
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Partial Trapdoor Switching

� We can do better by changing B progressively

Public Key: B = [U1 | AR2 | . . . | ARd ] (U1 ∼ Unif.)

Extra Slot: A3 = G1 − AR′
1

Effective Trapdoor: R = [R′
1 | R2 | . . . | Rd ]

Effective Tag: T = diag(1, t, . . . , t)

G1,0

G1,1

A3 → G1 − A′
3

G1,2

A′
3 → AR′

1

G1,3

signatures use R′
1

G1,4

AR1 → U1

G1,5

U1 → U′
1 + t⋆G1

G1,6

U′
1 → AR1

G1,7

signatures use R1

G1,8

AR′
1 → A′

3

G1,9

G1 − A′
3 → A3

Remove short relation from B1: LWE
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Partial Trapdoor Switching

� We can do better by changing B progressively

Public Key: B = [U′
1 + t⋆G1 | AR2 | . . . | ARd ] (U′

1 ∼ Unif.)

Extra Slot: A3 = G1 − AR′
1

Effective Trapdoor: R = [R′
1 | R2 | . . . | Rd ]

Effective Tag: T = diag(1, t, . . . , t)

G1,0

G1,1

A3 → G1 − A′
3

G1,2

A′
3 → AR′

1

G1,3

signatures use R′
1

G1,4

AR1 → U1

G1,5

U1 → U′
1 + t⋆G1

G1,6

U′
1 → AR1

G1,7

signatures use R1

G1,8

AR′
1 → A′

3

G1,9

G1 − A′
3 → A3

Hide tag t⋆ with partial gadget in B1: Identical
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Effective Tag: T = diag(1, t, . . . , t)

G1,0

G1,1

A3 → G1 − A′
3

G1,2

A′
3 → AR′

1

G1,3

signatures use R′
1

G1,4

AR1 → U1

G1,5

U1 → U′
1 + t⋆G1

G1,6

U′
1 → AR1

G1,7

signatures use R1

G1,8

AR′
1 → A′

3

G1,9

G1 − A′
3 → A3

Hide short relation in B1: LWE
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� We can do better by changing B progressively

Public Key: B = [AR1 + t⋆G1 | AR2 | . . . | ARd ]

Extra Slot: A3 = G1 − AR′
1

Effective Trapdoor: R = [R1 | R2 | . . . | Rd ]

Effective Tag: T = diag(t − t⋆, t, . . . , t)

G1,0

G1,1

A3 → G1 − A′
3

G1,2

A′
3 → AR′

1

G1,3

signatures use R′
1

G1,4

AR1 → U1

G1,5

U1 → U′
1 + t⋆G1

G1,6

U′
1 → AR1

G1,7

signatures use R1

G1,8

AR′
1 → A′

3

G1,9

G1 − A′
3 → A3

Sample signatures with R1 instead of R′
1: Trapdoor switching lemma
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Partial Trapdoor Switching

� We can do better by changing B progressively

Public Key: B = [AR1 + t⋆G1 | AR2 | . . . | ARd ]

Extra Slot: A3 = G1 − A′
3 (A′

3 ∼ Unif.)

Effective Trapdoor: R = [R1 | R2 | . . . | Rd ]

Effective Tag: T = diag(t − t⋆, t, . . . , t)
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3
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1
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signatures use R1
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AR′
1 → A′

3

G1,9

G1 − A′
3 → A3

Remove short relation from A3: LWE
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Partial Trapdoor Switching

� We can do better by changing B progressively

Public Key: B = [AR1 + t⋆G1 | AR2 | . . . | ARd ]

Extra Slot: A3 ∼ Uniform

Effective Trapdoor: R = [R1 | R2 | . . . | Rd ]

Effective Tag: T = diag(t − t⋆, t, . . . , t)

G1,0

G1,1

A3 → G1 − A′
3

G1,2

A′
3 → AR′

1

G1,3

signatures use R′
1

G1,4

AR1 → U1

G1,5

U1 → U′
1 + t⋆G1

G1,6

U′
1 → AR1

G1,7

signatures use R1

G1,8

AR′
1 → A′

3

G1,9

G1 − A′
3 → A3

Remove partial gadget from A3: Identical
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Partial Trapdoor Switching: Hybrid Argument

� We then loop the hybrid argument until we changed every slot

G1,0

G1,1

A3 → G1 − A′
3

G1,2

A′
3 → AR′

1

G1,3

signatures use R′
1

G1,4

AR1 → U1

G1,5

U1 → U′
1 + t⋆G1

G1,6

U′
1 → AR1

G1,7

signatures use R1

G1,8

AR′
1 → A′

3

G1,9

G1 − A′
3 → A3

G2,0

G2,1

A3 → G2 − A′
3

G2,2

A′
3 → AR′

2

G2,3

signatures use R′
2

G2,4

AR2 → U2

G2,5

U2 → U′
2 + t⋆G2

G2,6

U′
2 → AR2

G2,7

signatures use R2

G2,8

AR′
2 → A′

3

G2,9

G2 − A′
3 → A3

Gd,0

Gd,1

A3 → Gd − A′
3

Gd,2

A′
3 → AR′

d

Gd,3

signatures use R′
d

Gd,4

ARd → Ud

Gd,5

Ud → U′
d + t⋆Gd

Gd,6

U′
d → ARd

Gd,7

signatures use Rd

Gd,8

AR′
d → A′

3

Gd,9

Gd − A′
3 → A3

' '

. . .

. . .

. . .
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Elliptic Sampler

� Use elliptical Gaussians instead of spherical

+ '

p R′z v

[
s21 I

s22 I

]
− s2zR

′R′T
s2zR

′R′T

[
s21 I

s22 I

]

Spherical Sampling

z
Rz

s ≈ sz

√
1 +∥R∥22

Elliptical Sampling

z
Rz

s1 ≈ sz∥R∥2, s2 ≈ sz

v = p+

[
Rz

z

]
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Anonymous Credentials Use-Case:

Implementation & Performance

4



Estimated Performance

Model Assumptions |sig| |π|

[LLM+16] Adaptive SIS/LWE 8617 KB 671581 KB

Ours [JRS23] Adaptive M-SIS/M-LWE 289 KB 660 KB

[LLLW23] Selective M-SIS/M-LWE 118 KB 193 KB

[BLNS23]-1 Adaptive NTRU-ISISf 72 KB 243 KB

[BLNS23]-2 Adaptive Int-NTRU-ISISf 3.5 KB 62 KB

[BCR+23] Adaptive M-SIS/M-LWE - 1878 KB

Ours [AGJ+24] Adaptive M-SIS/M-LWE 6.8 KB 79 KB

Further (quick) optimizations?

• Reducing garbage commitments [LNP22] −→ 77 KB (3% gain)

• Dilithium compression for commitments [LNP22] −→ 70 KB (9% gain)

• Bimodal rejection sampling [LN22]5 −→ 61 KB (13% gain)

Estimations give |π| ≈ 61 KB (overall 24% gain), while on standard assumptions

5Lyubashevsky, Nguyen. BLOOM: Bimodal Lattice One-Out-of-Many Proofs and Applications. Asiacrypt 2022
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Credential Issuance and Implementation Performance

UserSigner

issuance

➊ # = Ar +Dm
➋ π = Prove(#, r,m)

[LNP22]6 (lin.)

# , π

➌ Verify(#, π)

➍ t ∈ T
➎ v = SampPre(sk,At , u+#)

= (t, v)
➏ = (t, v − [r|0]T )

Step ➊ ➋ ➌ ➍+➎ ➏ Total

Avg. Time 1 ms 222 ms

✓ Full issuance takes less than half a second! Imperceptible on user experience.

6Lyubashevsky, Nguyen, Plançon. Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General. Crypto 2022
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Credential Issuance and Implementation Performance

UserSigner

issuance

➊ # = Ar +Dm
➋ π = Prove(#, r,m)

[LNP22]6 (lin.)

# , π

➌ Verify(#, π)

➍ t ∈ T
➎ v = SampPre(sk,At , u+#)

= (t, v)
➏ = (t, v − [r|0]T )

Step ➊ ➋ ➌ ➍+➎ ➏ Total

Avg. Time 1 ms 222 ms 101 ms

✓ Full issuance takes less than half a second! Imperceptible on user experience.

6Lyubashevsky, Nguyen, Plançon. Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General. Crypto 2022

C. Jeudy Practical Post-Quantum Signatures for Privacy March 03rd, 2025 19/21



Credential Issuance and Implementation Performance

UserSigner

issuance

➊ # = Ar +Dm
➋ π = Prove(#, r,m)

[LNP22]6 (lin.)

# , π

➌ Verify(#, π)

➍ t ∈ T
➎ v = SampPre(sk,At , u+#)

= (t, v)

➏ = (t, v − [r|0]T )

Step ➊ ➋ ➌ ➍+➎ ➏ Total

Avg. Time 1 ms 222 ms 101 ms 57 ms

✓ Full issuance takes less than half a second! Imperceptible on user experience.

6Lyubashevsky, Nguyen, Plançon. Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General. Crypto 2022
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Credential Issuance and Implementation Performance

UserSigner

issuance

➊ # = Ar +Dm
➋ π = Prove(#, r,m)

[LNP22]6 (lin.)

# , π

➌ Verify(#, π)

➍ t ∈ T
➎ v = SampPre(sk,At , u+#)

= (t, v)
➏ = (t, v − [r|0]T )

Step ➊ ➋ ➌ ➍+➎ ➏ Total

Avg. Time 1 ms 222 ms 101 ms 57 ms 2 ms

✓ Full issuance takes less than half a second! Imperceptible on user experience.

6Lyubashevsky, Nguyen, Plançon. Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General. Crypto 2022
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Credential Issuance and Implementation Performance

UserSigner

issuance

➊ # = Ar +Dm
➋ π = Prove(#, r,m)

[LNP22]6 (lin.)

# , π

➌ Verify(#, π)

➍ t ∈ T
➎ v = SampPre(sk,At , u+#)

= (t, v)
➏ = (t, v − [r|0]T )

Step ➊ ➋ ➌ ➍+➎ ➏ Total

Avg. Time 1 ms 222 ms 101 ms 57 ms 2 ms 383 ms

✓ Full issuance takes less than half a second! Imperceptible on user experience.

6Lyubashevsky, Nguyen, Plançon. Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General. Crypto 2022
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Credential Showing and Implementation Performance

VerifiersUser

showing➊ π = Prove( ,m)
[LNP22] (quad.)

π

➋ ✓ p = Verify(π)

✓ p

Step ➊ ➋ Total

Avg. Time ([BCR+23]) 1843 ms

Avg. Time (Ours [AGJ+24]) 357 ms

✓ Full showing takes around half a second! 4× faster than [BCR+23].
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showing➊ π = Prove( ,m)
[LNP22] (quad.)

π

➋ ✓ p = Verify(π)

✓ p

Step ➊ ➋ Total

Avg. Time ([BCR+23]) 1843 ms 172 ms

Avg. Time (Ours [AGJ+24]) 357 ms 147 ms

✓ Full showing takes around half a second! 4× faster than [BCR+23].
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Credential Showing and Implementation Performance

VerifiersUser

showing➊ π = Prove( ,m)
[LNP22] (quad.)

π

➋ ✓ p = Verify(π)

✓ p

Step ➊ ➋ Total

Avg. Time ([BCR+23]) 1843 ms 172 ms 2015 ms

Avg. Time (Ours [AGJ+24]) 357 ms 147 ms 504 ms

✓ Full showing takes around half a second! 4× faster than [BCR+23].
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Conclusion and Directions



Wrapping Up

✓ General-Purpose Framework for Privacy-Enhanced Lattice Signature

· Based on standard post-quantum assumptions (M-SIS, M-LWE)

· Relatively compact for Digital Identity use-cases

· Concretely efficient with a proof-of-concept implementation

? Perspectives

Optimizations in specific constructions? (ePrint 2024/1289 for blind signatures)

Use of approximate trapdoors for compactness? (ePrint 2024/1952, talk on Mar. 19)

Is the partial trapdoor slot necessary?

MPC-in-the-Head to construct more efficient lattice ZKP?

Implement optimizations of ZKP (garbage, compression, bimodal): Done for BS

Optimized implementation (dedicated backend, parallelization, parameter selection)

Thank You!
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