
Practical Post-Quantum Signatures for Privacy

October 15th, 2024

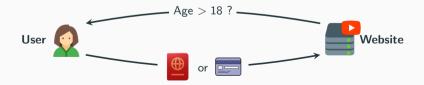
Sven Argo¹, Tim Güneysu^{1,2}, Corentin Jeudy³, Georg Land¹, Adeline Roux-Langlois⁴, Olivier Sanders³

Ruhr University Bochum
 DFKI GmbH, Cyber-Physical Systems
 ³ Orange Labs, Applied Crypto Group
 ⁴ Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC

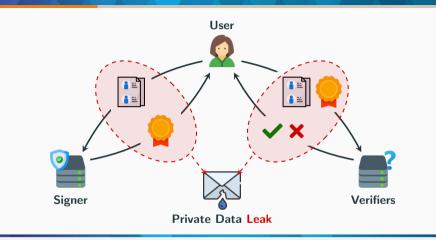
Digital Signatures

Example: Age Control

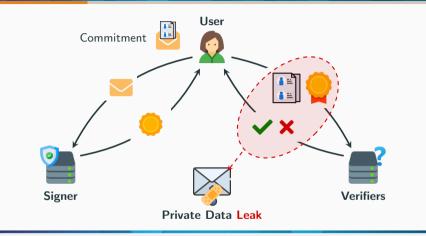
Temporarily showing an ID document to attest you are of age is not really a privacy issue.



Example: Age Control


Temporarily showing an ID document to attest you are of age is not really a privacy issue.

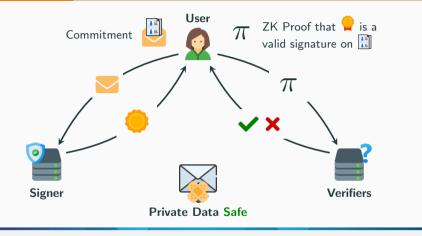
Sending an ID document or credit card to a website is more **permanent**. It can **store**, **share**, **exploit**. Requires **trust**.


Adding Privacy

No control over the disclosed information: Verifiers (and attacker) learn everything Simple but not suited for privacy

A

Adding Privacy


No control over the disclosed information: Verifiers (and attacker) learn everything Simple but not suited for privacy

CCS'24

A

October 15th, 2024

Adding Privacy: Signature with Efficient Protocols (SEP)

Full control of user information: Selective disclosure to verifiers (and attacker) But need for more complex tools: commitment, specific signature, ZKP

An Interesting Versatility

Many technical solutions answering concrete privacy use cases can be built from this blueprint.

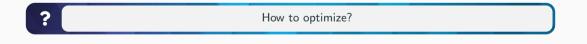
All these need some signature with some kind of anonymity

Industrial Interest: EPID and DAA deployed in billions of devices (TPM, Intel SGX). EPID, DAA, Group/Blind signatures in ISO/IEC standards (20008, 18370)

First (somewhat) practical post-quantum SEP from [JRS23]¹. Based on lattice trapdoor Gaussian sampling, security relies on M-SIS.

$$\mathbf{P}: \mathbf{R} \quad \mathbf{P}: \mathbf{B} = \mathbf{A}\mathbf{R} \quad \mathbf{v}: t, \widetilde{\mathbf{v}} = \mathbf{v} - \begin{bmatrix} \mathbf{r} \\ \mathbf{0} \end{bmatrix} \quad \mathbf{m} \quad \Longrightarrow \quad [\mathbf{A}|t\mathbf{G} - \mathbf{B}]\widetilde{\mathbf{v}} = \mathbf{u} + \mathbf{D}\mathbf{m} \mod q$$

$$\mathbf{A} \qquad t\mathbf{G} - \mathbf{B} \qquad \mathbf{v} = \mathbf{u} + \mathbf{A} \qquad \mathbf{r} + \mathbf{D} \cdots \qquad \mathbf{m}$$


$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

- Knowledge of **R** enables Gaussian sampling of \mathbf{v} satisfying the equation.
- Finding short (v, r) without **R** is difficult, even quantumly : **M-SIS**.
 - > M-SIS considered a standard assumption. Ask to find short $x \neq 0$ s.t. $Ax = 0 \mod q$.

¹Jeudy, Roux-Langlois, Sanders. Lattice Signature with Efficient Protocols, Application to Anonymous Credentials. Crypto 2023

Not Practical Enough...

	Security	Assumptions	sig	$ \pi $
[JRS23]	Adaptive	M-SIS/M-LWE	289 KB	660 KB

	Security	Assumptions	sig	$ \pi $
[JRS23]	Adaptive	M-SIS/M-LWE	289 KB	660 KB
[LLLW23]	Selective	M-SIS/M-LWE	118 KB	193 KB

• Relax security model [LLLW23]²: Selective security (adversary tells what/how they will attack)

? How to optimize?

²Lai, Liu, Lysyanskaya, Wang. Lattice-based Commit-Transferrable Signatures and Applications to Anonymous Credentials. ePrint 2023/766

	Security	Assumptions	sig	$ \pi $
[JRS23]	Adaptive	M-SIS/M-LWE	289 KB	660 KB
[LLLW23]	Selective	M-SIS/M-LWE	118 KB	193 KB
[BLNS23]-1	Adaptive	NTRU-ISIS _f	72 KB	243 KB
[BLNS23]-2	Adaptive	<u>Int</u> -NTRU-ISIS _f	3.5 KB	62 KB

- Relax security model [LLLW23]²: Selective security (adversary tells what/how they will attack)
- Relax security assumptions [BLNS23]³: Stronger assumptions (optionally interactive)

?

How to optimize?

²Lai, Liu, Lysyanskaya, Wang. Lattice-based Commit-Transferrable Signatures and Applications to Anonymous Credentials. ePrint 2023/766

³Bootle, Lyubashevsky, Nguyen, Sorniotti. A Framework for Practical Anonymous Credentials from Lattices. Crypto 2023

	Security	Assumptions	sig	$ \pi $
[JRS23]	Adaptive	M-SIS/M-LWE	289 KB	660 KB
[LLLW23]	Selective	M-SIS/M-LWE	118 KB	193 KB
[BLNS23]-1	Adaptive	NTRU-ISIS _f	72 KB	243 KB
[BLNS23]-2	Adaptive	Int-NTRU-ISIS _f	3.5 KB	62 KB
[BCR ⁺ 23]	Adaptive	M-SIS/M-LWE	-	1878 KB

- Relax security model [LLLW23]²: Selective security (adversary tells what/how they will attack)
- Relax security assumptions [BLNS23]³: Stronger assumptions (optionally interactive)
- Optimize for implementation [BCR⁺23]⁴: Larger sizes

CCS'24

How to optimize sizes and timings while keeping strong well-studied security?

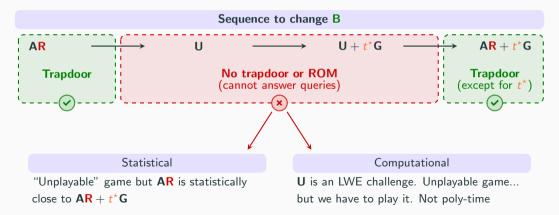
[?]

²Lai, Liu, Lysyanskaya, Wang. Lattice-based Commit-Transferrable Signatures and Applications to Anonymous Credentials. ePrint 2023/766

³Bootle, Lyubashevsky, Nguyen, Sorniotti. A Framework for Practical Anonymous Credentials from Lattices. Crypto 2023

⁴Blazy, Chevalier, Renaut, Ricosset, Sageloli, Senet. Efficient Implementation of a Post-Quantum Anonymous Credential Protocol. ARES 2023

Dive in the Security Proof: Computational Trapdoor Problem


Change $\mathbf{B} = \mathbf{AR}$ into $\mathbf{B} = \mathbf{AR} + t^* \mathbf{G}$ with hidden guess t^* , then solve **M-SIS** using the forgery.

 $[\mathbf{A}|\mathbf{t}^{\star}\mathbf{G}-\mathbf{B}]\mathbf{v}^{\star}=\mathbf{u}+\mathbf{D}\mathbf{m}^{\star}\iff \mathbf{A}((\mathbf{v}_{1}^{\star}-\mathbf{v}_{1}^{\mathcal{C}})+\mathbf{R}(\mathbf{v}_{2}^{\star}-\mathbf{v}_{2}^{\mathcal{C}})-\mathbf{S}(\mathbf{m}^{\star}-\mathbf{m}))=\mathbf{0}$

Dive in the Security Proof: Computational Trapdoor Problem

Change B = AR into $B = AR + t^*G$ with hidden guess t^* , then solve M-SIS using the forgery.

$$[\mathbf{A}|t^{*}\mathbf{G}-\mathbf{B}]\mathbf{v}^{*}=\mathbf{u}+\mathbf{D}\mathbf{m}^{*}\iff \mathbf{A}((\mathbf{v}_{1}^{*}-\mathbf{v}_{1}^{\mathcal{C}})+\mathbf{R}(\mathbf{v}_{2}^{*}-\mathbf{v}_{2}^{\mathcal{C}})-\mathbf{S}(\mathbf{m}^{*}-\mathbf{m}))=\mathbf{0}$$

CCS'24

Partial Trapdoor Switching

Use two trapdoors. \mathbf{R}' used when \mathbf{B} is uniform

1

$$\bar{\mathbf{A}}_{t} = \begin{bmatrix} \mathbf{A} | t\mathbf{G} - \mathbf{B} | \mathbf{G} - \mathbf{AR'} \end{bmatrix}$$
Second trapdoor slot
Dim: $d \times kd$
 $(k = \log_{b} q)$

Partial Trapdoor Switching

Use two trapdoors. \mathbf{R}' used when \mathbf{B} is uniform

$$\overline{\mathbf{A}}_{t} = \begin{bmatrix} \mathbf{A} | t\mathbf{G} - \mathbf{B} | \mathbf{G} - \mathbf{A}\mathbf{R}' \end{bmatrix}$$
Second trapdoor slot
Dim: $d \times kd$
 $(k = \log_{b} q)$

Change progressively each block of k columns, and use only a partial trapdoor slot

$$\mathbf{B} = \begin{bmatrix} \mathbf{A}\mathbf{R}_{1} + t^{*}\mathbf{G}_{1} \mid \dots \mid \mathbf{A}\mathbf{R}_{i-1} + t^{*}\mathbf{G}_{i-1} \mid \mathbf{U}_{i} \mid \mathbf{A}\mathbf{R}_{i+1} \mid \dots \mid \mathbf{A}\mathbf{R}_{d} \end{bmatrix}$$

trapdoor except for t^{*}
Handled with partial
trapdoor slot (dim: $d \times k$)
 $\mathbf{G}_{i} - \mathbf{A}\mathbf{R}_{i}^{\prime}$

Effective tag matrix: $\mathbf{T} = \operatorname{diag} \left(t - t^*, \ldots, t - t^*, \mathbf{1}, t, \ldots, t \right)$

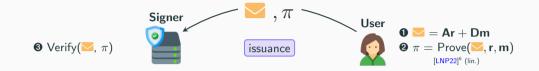
	Security	Assumptions	sig	$ \pi $
[JRS23]	Adaptive	M-SIS/M-LWE	289 KB	660 KB
[LLLW23]	Selective	M-SIS/M-LWE	118 KB	193 KB
[BLNS23]-1	Adaptive	NTRU-ISIS _f	72 KB	243 KB
[BLNS23]-2	Adaptive	Int-NTRU-ISIS _f	3.5 KB	62 KB
[BCR ⁺ 23]	Adaptive	M-SIS/M-LWE	-	1878 KB
Ours	Adaptive	M-SIS/M-LWE	6.8 KB	79 KB

Further Optimizations?

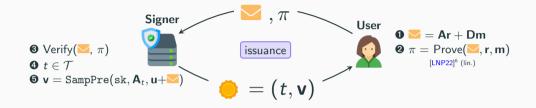
	Security	Assumptions	sig	$ \pi $
[JRS23]	Adaptive	M-SIS/M-LWE	289 KB	660 KB
[LLLW23]	Selective	M-SIS/M-LWE	118 KB	193 KB
[BLNS23]-1	Adaptive	NTRU-ISIS _f	72 KB	243 KB
[BLNS23]-2	Adaptive	Int-NTRU-ISIS _f	3.5 KB	62 KB
[BCR ⁺ 23]	Adaptive	M-SIS/M-LWE	-	1878 KB
Ours	Adaptive	M-SIS/M-LWE	6.8 KB	79 KB

Further Optimizations?

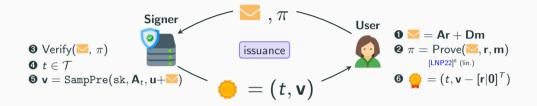
- Reducing garbage commitments [LNP22] \longrightarrow 77 KB (3% gain)
- Dilithium compression for commitments [LNP22] \longrightarrow 70 KB (9% gain)
- Bimodal rejection sampling $[LN22]^5 \longrightarrow 61 \text{ KB} (13\% \text{ gain})$


Estimations give $|\pi| \approx 61$ KB (overall 24% gain), while on standard assumptions

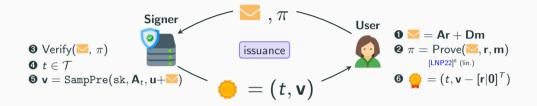
⁵Lyubashevsky, Nguyen. BLOOM: Bimodal Lattice One-Out-of-Many Proofs and Applications. Asiacrypt 2022


Step	0	0	6	4 + 5	0	Total
Avg. Time	1 ms	222 ms				

⁶Lyubashevsky, Nguyen, Plançon. Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General. Crypto 2022


Step	0	0	0	0 +0	0	Total
Avg. Time	1 ms	222 ms	101 ms			

⁶Lyubashevsky, Nguyen, Plançon. Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General. Crypto 2022


Step	0	0	6	0 +0	0	Total
Avg. Time	1 ms	222 ms	101 ms	57 ms		

⁶Lyubashevsky, Nguyen, Plançon. Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General. Crypto 2022

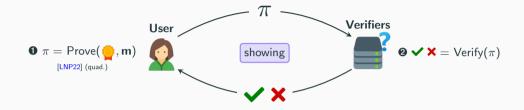
Step	0	0	6	4 + 5	6	Total
Avg. Time	1 ms	222 ms	101 ms	57 ms	2 ms	

⁶Lyubashevsky, Nguyen, Plançon. Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General. Crypto 2022

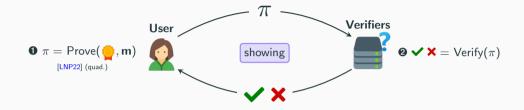
Step	0	0	0	@ + 0	6	Total
Avg. Time	1 ms	222 ms	101 ms	57 ms	2 ms	383 ms

~

Full issuance is less than half a second. Aligns well with user experience requirements.


⁶Lyubashevsky, Nguyen, Plançon. Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General. Crypto 2022

Credential Showing and Implementation Performance


Step	0	0	Total
Avg. Time ([BCR ⁺ 23])	1843 ms		
Avg. Time (Ours)	357 ms		

Credential Showing and Implementation Performance

Step	0	0	Total
Avg. Time ([BCR ⁺ 23])	1843 ms	172 ms	
Avg. Time (Ours)	357 ms	147 ms	

Credential Showing and Implementation Performance

Step	0	0	Total
Avg. Time ([BCR ⁺ 23])	1843 ms	172 ms	2015 ms
Avg. Time (Ours)	357 ms	147 ms	504 ms

Wrapping Up

1 General-Purpose Post-Quantum Signatures

- ✓ Security in the standard model with tighter analysis
- ✓ Better performance with more compact double trapdoors, and elliptic sampling
- Q <u>Future work:</u> Are partial trapdoors necessary?

2 Concrete Privacy Use-Case: Anonymous Credentials

- ✓ Instantiation of our SEP for Post-Quantum Anonymous Credentials
- ✓ Security proof without parallel extraction of ZKP.
- Q Future work: Further privacy-oriented use-cases? Blind/group signatures?

8 Concrete Practicality: Implementation of Post-Quantum Anonymous Credentials

- ✓ First implementation of the ZKP framework of Crypto'22
- Q <u>Future work:</u> Optimized implementation (dedicated backend, parallelization, parameter selection), Implement optimizations of ZKP (garbage, compression, bimodal)

Thank You!

References i

- O. Blazy, C. Chevalier, G. Renaut, T. Ricosset, E. Sageloli, and H. Senet.
 Efficient Implementation of a Post-Quantum Anonymous Credential Protocol. In ARES, 2023.
- J. Bootle, V. Lyubashevsky, N. K. Nguyen, and A. Sorniotti.
 A Framework for Practical Anonymous Credentials from Lattices. In <u>CRYPTO</u>, 2023.
- C. Jeudy, A. Roux-Langlois, and O. Sanders.
 Lattice Signature with Efficient Protocols, Application to Anonymous Credentials. In <u>CRYPTO</u>, 2023.
- Q. Lai, F.-H. Liu, A. Lysyanskaya, and Z. Wang.
 Lattice-based Commit-Transferrable Signatures and Applications to Anonymous Credentials.

IACR Cryptol. ePrint Arch., page 766, 2023.

V. Lyubashevsky and N. K. Nguyen. BLOOM: Bimodal Lattice One-Out-of-Many Proofs and Applications. ASIACRYPT, 2022.

V. Lyubashevsky, N. K. Nguyen, and M. Plançon. Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General.

CRYPTO, 2022.