Phoenix: Hash-and-Sign with Aborts from Lattice Gadgets

Corentin Jeudy^{1,2}, Adeline Roux-Langlois³, Olivier Sanders¹

¹ Orange Labs, Applied Crypto Group
 ² Univ Rennes, CNRS, IRISA
 ³ Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC

PQCrypto 2024 - June 13th, 2024

Trapdoors and Samplers for Secure Hash-and-Sign

$\mathsf{ISIS}_{m,d,q,\beta}$

Given $(\mathbf{A}, \mathbf{u}) \leftarrow U(R_q^{d \times m+1})$, find $\mathbf{x} \in R^m$ such that $\mathbf{A}\mathbf{x} = \mathbf{u} \mod q$, $\|\mathbf{x}\|_2 \leq \beta$.

ISIS is hard unless we know a trapdoor \mathbf{R} on \mathbf{A} .

- Solution \mathbf{b} Ability to invert $f_{\mathbf{A}} : \mathbf{x} \mapsto \mathbf{A}\mathbf{x} \mod q$ over bounded domain
 - S Ability to randomize preimage finding without leaking R → Preimage Sampling
 - Design secure hash-and-sign signatures [GPV08]¹

Several choices for trapdoors and preimage samplers. Today: Gadget-based Trapdoors

Jeudy, Roux-Langlois, Sanders

¹Gentry, Peikert, Vaikuntanathan. Trapdoors for Hard Lattices and New Cryptographic Constructions. STOC 2008.

Trapdoor Preimage Sampling with Aborts

Approaches to Gadget-Based Samplers

Micciancio-Peikert trapdoors [MP12]²: Family of matrices \overline{A} such that

$$\overline{\mathbf{A}}\mathbf{R}' = \mathbf{G} \mod q$$
, with $\mathbf{R}' = \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}$, i.e. $\overline{\mathbf{A}} = [\mathbf{A}|\mathbf{G} - \mathbf{A}\mathbf{R}]$ and $\mathbf{A} = [\mathbf{I}|\mathbf{A}']$

with **G** a public gagdet matrix allowing for *efficient short inversion*.

$$\mathbf{P} \mathbf{B} = \mathbf{AR}.$$

Naive Approach: Compute **z** so that $\mathbf{Gz} = \mathbf{u} \mod q$, and return $\mathbf{R}'\mathbf{z}$ as preimage of **u**. Typically, $\mathbf{G} = \mathbf{I} \otimes [b^0| \dots |b^{k-1}]$ with $k = \log_b q$.

Collecting many preimages will leak R...

Add a mask **p** to get preimages $\mathbf{v} = \mathbf{p} + \mathbf{R}' \mathbf{z}$ (and gadget inversion on $\mathbf{u} - \overline{\mathbf{A}}\mathbf{p}$ instead of \mathbf{u})

Jeudy, Roux-Langlois, Sanders

²Micciancio, Peikert. Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller. Eurocrypt 2012.

How to Choose the Mask? (1) Convolution

Compensate the statistical leakage by adapting the covariance of **p** [MP12]. Only available analysis for **z** and **p** Gaussian.

What do we need to hide exactly?

$$\mathbf{p} + \mathbf{R'z} = \begin{bmatrix} \mathbf{p}_1 + \mathbf{Rz} \\ \mathbf{p}_2 + \mathbf{z} \end{bmatrix} \rightarrow \text{Shift to hide}$$

 $\mathbf{p}_2 + \mathbf{z} \longrightarrow \text{Leaks information on shift}$

What do we need to hide exactly?

$$\mathbf{p} + \mathbf{R'z} = \begin{bmatrix} \mathbf{p}_1 + \mathbf{Rz} & \rightarrow & \text{Shift to hide} \\ \mathbf{p}_2 + \mathbf{z} & \rightarrow & \text{Leaks information on shift} \end{bmatrix}$$

A Cannot set $\mathbf{p}_2 = \mathbf{0}$... What if we really want $\mathbf{p}_2 = \mathbf{0}$?

Fiat-Shamir	Ау	С	y + Sc	▲
$\mathbf{p}_2 = 0$	Ap ₁	Z	$p_1 + Rz$	Leaking Secret
	СМТ	CHAL	RESP	

What do we need to hide exactly?

$$\mathbf{p} + \mathbf{R'z} = \begin{bmatrix} \mathbf{p}_1 + \mathbf{Rz} & \rightarrow & \text{Shift to hide} \\ \mathbf{p}_2 + \mathbf{z} & \rightarrow & \text{Leaks information on shift} \end{bmatrix}$$

A Cannot set
$$\mathbf{p}_2 = \mathbf{0}$$
... What if we really want $\mathbf{p}_2 = \mathbf{0}$?

Fiat-Shamir with aborts	Ау	C	y + Sc & Rejection	~
$\mathbf{p}_2 = 0$	Ap ₁	Z	$\mathbf{p}_1 + \mathbf{Rz}$ & Rejection	Rejection Sampling
	СМТ	CHAL	RESP	

 $^{^{3}}$ Lyubashevsky, Wichs. Simple lattice trapdoor sampling from a broad class of distributions. PKC 2015.

Jeudy, Roux-Langlois, Sanders

Rejection Sampler for Uniform Syndromes

Statistical regularity needs high entropy $\ensuremath{p_1}$

Rejection Sampler for Uniform Syndromes

Leverage entropy of the non-arbitrary syndrome to avoid regularity argument of [LW15]

```
With \mathbf{u} = \mathcal{H}(m), no need for high entropy \mathbf{p}_1
```


Rejection Sampler for Uniform Syndromes

Leverage entropy of the non-arbitrary syndrome to avoid regularity argument of [LW15]

With $\mathbf{u} = \mathcal{H}(m)$, no need for high entropy \mathbf{p}_1

Jeudy, Roux-Langlois, Sanders

(e) Combination with approximate trapdoors $[CGM19]^4$: Finding \mathbf{v}' s.t. $\overline{\mathbf{A}}\mathbf{v}' + \mathbf{e} = \mathbf{u}$ with \mathbf{e} small is sufficient. Let $\mathbf{G}_H = \mathbf{I} \otimes [b^{\ell}| \dots |b^{k-1}]$ (high-order decomposition).

⁴ Chen, Genise, Mukherjee. Approximate trapdoors for lattices and smaller hash-and-sign signatures. Asiacrypt 2019.

 $^{^{5}}$ Yu, Jia, Wang. Compact lattice gadget and its applications to hash-and-sign signatures. Crypto 2023.

(e) Combination with approximate trapdoors [CGM19]⁴: Finding \mathbf{v}' s.t. $\overline{\mathbf{A}}\mathbf{v}' + \mathbf{e} = \mathbf{u}$ with \mathbf{e} small is sufficient. Let $\mathbf{G}_H = \mathbf{I} \otimes [b^{\ell}| \dots |b^{k-1}]$ (high-order decomposition).

⁴ Chen, Genise, Mukherjee. Approximate trapdoors for lattices and smaller hash-and-sign signatures. Asiacrypt 2019.

 $^{^{5}}$ Yu, Jia, Wang. Compact lattice gadget and its applications to hash-and-sign signatures. Crypto 2023.

(e) Combination with approximate trapdoors [CGM19]⁴: Finding \mathbf{v}' s.t. $\overline{\mathbf{A}}\mathbf{v}' + \mathbf{e} = \mathbf{u}$ with \mathbf{e} small is sufficient. Let $\mathbf{G}_H = \mathbf{I} \otimes [b^{\ell}| \dots |b^{k-1}]$ (high-order decomposition).

⁴ Chen, Genise, Mukherjee. Approximate trapdoors for lattices and smaller hash-and-sign signatures. Asiacrypt 2019.

 $^{^{5}}$ Yu, Jia, Wang. Compact lattice gadget and its applications to hash-and-sign signatures. Crypto 2023.

(e) Combination with approximate trapdoors [CGM19]⁴: Finding \mathbf{v}' s.t. $\overline{\mathbf{A}}\mathbf{v}' + \mathbf{e} = \mathbf{u}$ with \mathbf{e} small is sufficient. Let $\mathbf{G}_H = \mathbf{I} \otimes [b^{\ell}| \dots |b^{k-1}]$ (high-order decomposition).

Preimage error ${f e}$ bounded $b^\ell-1$ and uniform

Smaller than [CGM19]

Solution Allows for dropping more entries (up to \mathbf{G}_H square with $\ell = k - 1$).

 \bigcirc Slightly larger than with semi-random sampler [YJW23]⁵, but much smaller v_2 .

⁴Chen, Genise, Mukherjee. Approximate trapdoors for lattices and smaller hash-and-sign signatures. Asiacrypt 2019.

⁵Yu, Jia, Wang. Compact lattice gadget and its applications to hash-and-sign signatures. Crypto 2023.

Application to Hash-and-Sign Signatures: Phoenix Lattice-based hash-and-sign signatures follow the GPV framework [GPV08]. Requires two main ingredients: a trapdoor (hidden under some assumption), a simulatable preimage sampler.

Lattice-based hash-and-sign signatures follow the GPV framework [GPV08]. Requires two main ingredients: a trapdoor (hidden under some assumption), a simulatable preimage sampler.

Short signature but large public key. Can we reduce the public key size?

Short signature but large public key. Can we reduce the public key size? $\ensuremath{\text{Yes!}}$

• Split
$$\mathbf{P} = \mathbf{B}$$
 into $\mathbf{B}_L + 2^{\ell'} \mathbf{B}_H$.
 $\mathbf{v}_{1,1} + \mathbf{A}' \mathbf{v}_{1,2} + (\mathbf{G}_H - \mathbf{B}) \mathbf{v}_2 = \mathcal{H}(m)$

Short signature but large public key. Can we reduce the public key size? $\ensuremath{\text{Yes!}}$

Split
$$\mathbf{P} = \mathbf{B}$$
 into $\mathbf{B}_L + 2^{\ell'} \mathbf{B}_H$.
 $\mathbf{v}_{1,1} + \mathbf{A}' \mathbf{v}_{1,2} + (\mathbf{G}_H - 2^{\ell'} \mathbf{B}_H) \mathbf{v}_2 - \mathbf{B}_L \mathbf{v}_2 = \mathcal{H}(m)$

Short signature but large public key. Can we reduce the public key size? Yes!

Split
$$\mathbf{P} = \mathbf{B}$$
 into $\mathbf{B}_L + 2^{\ell'} \mathbf{B}_H$.
 $\mathbf{v}'_{1,1}$ includes sampling+compression errors
 $\mathbf{v}'_{1,1} + \mathbf{A}' \mathbf{v}_{1,2} + (\mathbf{G}_H - 2^{\ell'} \mathbf{B}_H) \mathbf{v}_2 = \mathcal{H}(m)$

Jeudy, Roux-Langlois, Sanders

PQCrypto 2024 - June 13th, 2024

Performance

	NIST-II			NIST-III		NIST-V	
	pk	sig	pk	sig		pk	sig
Dilithium	1312	2420	1952	3293		2592	4595
Eagle (HuFu)	-	- (2455)	1952	3052 (3540)		-	- (4520)
Phoenix	1184	2190	1490	2897		2219	4468

Conclusion

Wrapping Up

Our contributions (https://ia.cr/2023/446)

- Rehabilitating the [LW15] sampler when targets are uniform
- Optimization with approximate trapdoors
- Application to Hash-and-Sign (with Aborts) with key compression for free: Phoenix
 - $\circ~$ General distributions without complex Gaussian samplers
 - $\circ~$ Interpolates performance of FSwA and Hash-and-Sign
 - $\circ~$ Tighter QROM security than FSwA

Future Work

- **Q** Compact distributions with easy-to-protect rejection step?
- **Q** Other applications of the approximate rejection sampler?
- **Q** Approximate rejection sampler with iNTRU?

Thank you for your attention!

Questions?

References

F

 Y. Chen, N. Genise, and P. Mukherjee.
 Approximate Trapdoors for Lattices and Smaller Hash-and-Sign Signatures. In ASIACRYPT, 2019.

- C. Gentry, C. Peikert, and V. Vaikuntanathan.
 Trapdoors for Hard Lattices and New Cryptographic Constructions.
 In STOC, 2008.
- V. Lyubashevsky and D. Wichs.
 Simple Lattice Trapdoor Sampling from a Broad Class of Distributions. In <u>PKC</u>, 2015.
- D. Micciancio and C. Peikert.

Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller. In <u>EUROCRYPT</u>, 2012.

ii

Y. Yu, H. Jia, and X. Wang. **Compact Lattice Gadget and Its Applications to Hash-and-Sign Signatures.** In <u>CRYPTO</u>, 2023.