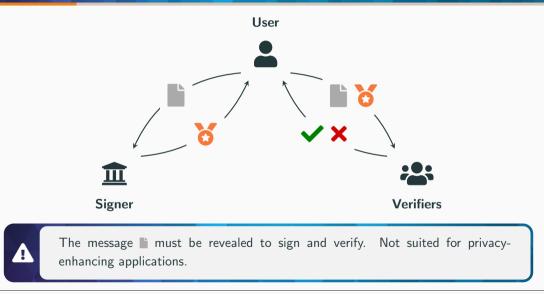
Lattice Signature with Efficient Protocols, Application to Anonymous Credentials

Corentin Jeudy^{1,2}, Adeline Roux-Langlois³, Olivier Sanders¹

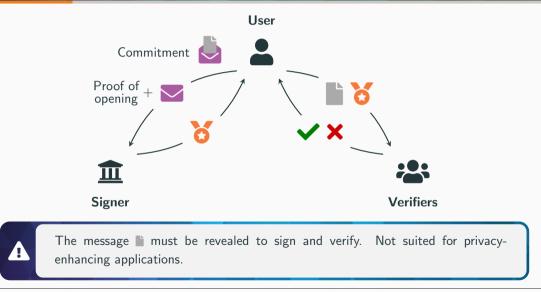
¹ Orange Labs, Applied Crypto Group
 ² Univ Rennes, CNRS, IRISA
 ³ Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC

Signature with Efficient Protocols (SEP)



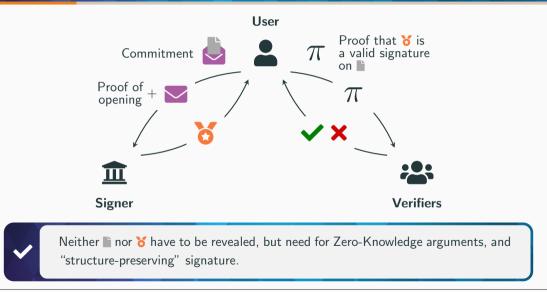
Jeudy, Roux-Langlois, Sanders

Signature with Efficient Protocols (SEP)



Jeudy, Roux-Langlois, Sanders

Signature with Efficient Protocols (SEP)



Jeudy, Roux-Langlois, Sanders

An Interesting Versatility

Many concrete privacy-enhancing applications.

- Anonymous Credentials Systems: requires the ability to
 - sign committed messages
 - ✓ prove possession of a message-signature pair in ZK
- Group Signatures: requires to add a verifiable encryption of the user identity
- Blind Signatures: requires the ability to
 - sign committed messages
 - ✓ prove possession of a signature on a public message in ZK

• E-Cash Systems

• etc.

Real industrial impact: EPID and DAA deployed in billions of devices (TPM, SGX). Blind/Group signatures in ISO standards

Very efficient instantiations of SEPs in the classical setting.

- $[CL02]^1$ Based on the Strong-RSA assumption.
- [CL04]²[BB08]³[PS16]⁴ Based on pairings in bilinear groups.

[BB08][PS16] are constant-size. Very efficient group signatures, anonymous credentials, etc.

• Best group signature is based on SEP: 0.16 KB

¹J. Camenisch, A. Lysyanskaya. A signature scheme with efficient protocols. SCN 2002.

 $^{^2}$ J. Camenisch, A. Lysyanskaya. Signature schemes and anonymous credentials from bilinear maps. CRYPTO 2004.

 $^{^3}$ D. Boneh, X. Boyen. Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptol 2008.

⁴D. Pointcheval, O. Sanders. Short Randomizable Signatures. CT-RSA 2016.

Very efficient instantiations of SEPs in the classical setting.

- $[CL02]^1$ Based on the Strong-RSA assumption.
- [CL04]²[BB08]³[PS16]⁴ Based on pairings in bilinear groups.

[BB08][PS16] are constant-size. Very efficient group signatures, anonymous credentials, etc.

• Best group signature is based on SEP: 0.16 KB

Those are vulnerable to quantum computing. How about $\ensuremath{\textbf{post-quantum}}$ solutions?

¹J. Camenisch, A. Lysyanskaya. A signature scheme with efficient protocols. SCN 2002.

 $^{^2}$ J. Camenisch, A. Lysyanskaya. Signature schemes and anonymous credentials from bilinear maps. CRYPTO 2004.

 $^{^3}$ D. Boneh, X. Boyen. Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptol 2008.

⁴D. Pointcheval, O. Sanders. Short Randomizable Signatures. CT-RSA 2016.

Existing PQC Signature with Efficient Protocols

Only one proposal of post-quantum signature with efficient protocols:

• [LLM⁺16]⁵ Proof of concept based on standard lattices.

		pk	sk	sig	$ \pi $	
[LLM+16]	Exact Proof	3 TB	15 GB	9 MB	10 GB	
	Appr. Proof	7 TB	37 GB	14 MB	670 MB	

Jeudy, Roux-Langlois, Sanders

 $^{^{5}}$ B. Libert, S. Ling, F. Mouhartem, K. Nguyen, and H. Wang. Signature schemes with efficient protocols and dynamic group signatures from lattice assumptions. ASIACRYPT, 2016.

Existing PQC Signature with Efficient Protocols

Only one proposal of post-quantum signature with efficient protocols:

• [LLM⁺16]⁵ Proof of concept based on standard lattices.

		pk	sk	sig	$ \pi $	
[LLM+16]	Exact Proof	3 TB	15 GB	9 MB	10 GB	
	Appr. Proof	7 TB	37 GB	14 MB	670 MB	

Simpler, more compact, more efficient construction on standard lattices, and extension to ideal and module lattices.

		pk	sk	sig	$ \pi $	
Ours	Exact Proof	8 MB	9 MB	270 KB	640 KB	

⁵B. Libert, S. Ling, F. Mouhartem, K. Nguyen, and H. Wang. Signature schemes with efficient protocols and dynamic group signatures from lattice assumptions. ASIACRYPT, 2016.

Jeudy, Roux-Langlois, Sanders

Today

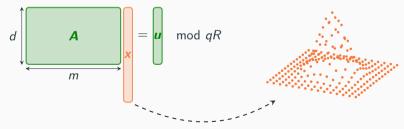
Warmup: Trapdoor and Regular Signatures

Short Integer Solution and Trapdoors

Module-SIS_{m,d,q,β}

Given $\mathbf{A} \leftrightarrow U((R/qR)^{d \times m})$, find a **non-zero** $\mathbf{x} \in R^m$ such that $\mathbf{A}\mathbf{x} = \mathbf{0} \mod qR$, $0 < \|\mathbf{x}\|_2 \le \beta$. $R = \mathbb{Z}[\mathbf{x}]/\langle \mathbf{x}^n + 1 \rangle \text{ with } n = 2^k$

Trapdoor on **A**: secret piece of information used to sample Gaussian vector **x** such that $Ax = u \mod qR$ for any syndrome **u**



A Simple Signature Using Trapdoors

Design rationale of Falcon (future standard FN-DSA from NIST)

Alice has a public key $\mathcal{P} = \mathcal{A}$, and a secret trapdoor \mathcal{P} on \mathcal{A} .

Signing a message *m*

1 Hash the message into $\boldsymbol{u} = \mathcal{H}(\boldsymbol{m})$.

Verifying a signature 👸

1 Hash the message into $\boldsymbol{u} = \mathcal{H}(\boldsymbol{m})$.

• Use P to sample a Gaussian x (arrow) such that $Ax = u \mod qR$.

Check that Ax = u mod qR, and that x is short.

Signature is
$$\mathbf{\overleftarrow{0}} = \mathbf{x}$$

Jeudy, Roux-Langlois, Sanders

Our Lattice Signature With Efficient Protocols

1

Original Construction from [LLM+16]

 $\mathbf{P} = \mathbf{T}_{\mathbf{A}} \text{ (Trapdoor), } \mathbf{P} = \mathbf{A}_i, \mathbf{u}, \mathbf{D}, \mathbf{D}_j \text{ uniform public} \\ \text{sig} = ((\tau_i)_i, \mathbf{v}, \mathbf{r}) \text{ with } \tau_i \text{ tag bits, } \mathbf{v}, \mathbf{r} \text{ short, } \mathbf{m}_j \text{ binary vectors}$

$$\underbrace{\begin{bmatrix} \boldsymbol{A} & | & \boldsymbol{A}_0 + \sum_j \boldsymbol{\tau}_j \boldsymbol{A}_j \end{bmatrix}}_{\boldsymbol{T}_{\boldsymbol{A}} \text{ extends to full matrix}} \boldsymbol{v} = \boldsymbol{u} + \boldsymbol{D} \cdot \operatorname{bin} \left(\underbrace{\boldsymbol{D}_0 \boldsymbol{r} + \sum_j \boldsymbol{D}_j [\boldsymbol{m}_j | \boldsymbol{1} - \boldsymbol{m}_j]}_{\text{Commitment}} \right)$$

Packing Messages with Variable Lengths

 $\mathbf{P} = \mathbf{T}_{\mathbf{A}} \text{ (Trapdoor), } \mathbf{P} = \mathbf{A}_i, \mathbf{u}, \mathbf{D}, \mathbf{D}_j \text{ uniform public} \\ \text{sig} = ((\tau_i)_i, \mathbf{v}, \mathbf{r}) \text{ with } \tau_i \text{ tag bits, } \mathbf{v}, \mathbf{r} \text{ short, } \mathbf{m} \text{ binary vector}$

$$[\mathbf{A} \mid \mathbf{A}_0 + \sum_i \mathbf{\tau}_i \mathbf{A}_i] \cdot \mathbf{v} = \mathbf{u} + \mathbf{D} \cdot \operatorname{bin}\left(\underbrace{\mathbf{D}_0 \mathbf{r} + \mathbf{D}_1[\mathbf{m}|\mathbf{1} - \mathbf{m}]}_{\mathbf{N}}\right)$$

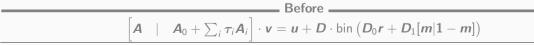
$$\mathbf{A} \mid \mathbf{A}_0 + \sum_i \mathbf{\tau}_i \mathbf{A}_i
ight] \cdot \mathbf{v} = \mathbf{u} + \mathbf{D} \cdot bin \left(\mathbf{D}_0 \mathbf{r} + \sum_j \mathbf{D}_j [\mathbf{m}_j | \mathbf{1} - \mathbf{m}_j]
ight)$$

Jeudy, Roux-Langlois, Sanders

New Arguments in Security Proofs

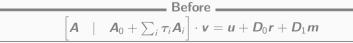
 $\mathbf{P} = \mathbf{T}_{\mathbf{A}} \text{ (Trapdoor), } \mathbf{P} = \mathbf{A}_i, \mathbf{u}, \mathbf{D}_j \text{ uniform public} \\ \text{sig} = ((\tau_i)_i, \mathbf{v}, \mathbf{r}) \text{ with } \tau_i \text{ tag bits, } \mathbf{v}, \mathbf{r} \text{ short, } \mathbf{m} \text{ binary vector}$

$$[\mathbf{A} \mid \mathbf{A}_0 + \sum_i \mathbf{\tau}_i \mathbf{A}_i] \cdot \mathbf{v} = \mathbf{u} + \underbrace{\mathbf{D}_0 \mathbf{r} + \mathbf{D}_1 \mathbf{m}}_{\mathbf{N}}$$

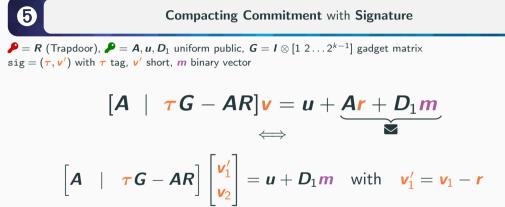


Jeudy, Roux-Langlois, Sanders

$$[\mathbf{A} \mid \mathbf{\tau}\mathbf{G} - \mathbf{A}\mathbf{R}] \cdot \mathbf{v} = \mathbf{u} + \underbrace{\mathbf{D}_0\mathbf{r} + \mathbf{D}_1\mathbf{m}}_{\mathbf{X}}$$



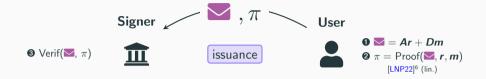
Jeudy, Roux-Langlois, Sanders



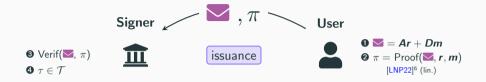
Jeudy, Roux-Langlois, Sanders

Application to Anonymous Credentials: The Protocols

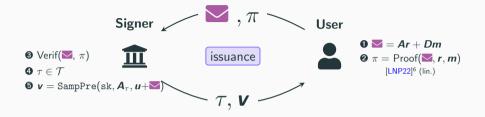
⁶V. Lyubashevsky, N. K. Nguyen, M. Plançon. Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General. Crypto 2022.



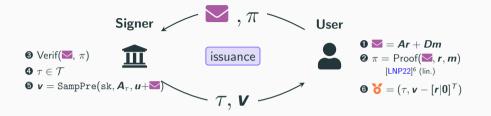
⁶V. Lyubashevsky, N. K. Nguyen, M. Plançon. Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General. Crypto 2022.



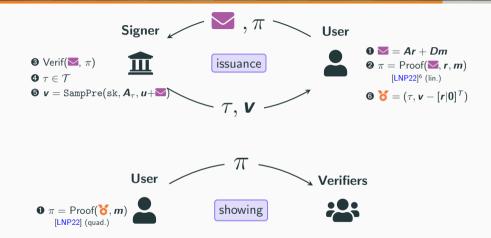
⁶V. Lyubashevsky, N. K. Nguyen, M. Plançon. Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General. Crypto 2022.



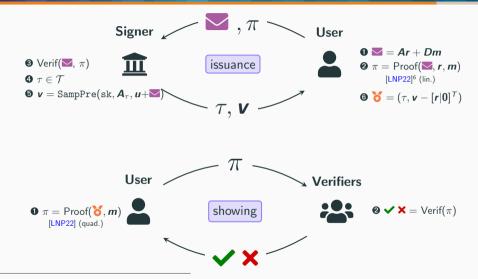
⁶V. Lyubashevsky, N. K. Nguyen, M. Plançon. Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General. Crypto 2022.



⁶V. Lyubashevsky, N. K. Nguyen, M. Plançon. Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General. Crypto 2022.



⁶V. Lyubashevsky, N. K. Nguyen, M. Plançon. Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General. Crypto 2022.



⁶V. Lyubashevsky, N. K. Nguyen, M. Plançon. Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General. Crypto 2022.

Jeudy, Roux-Langlois, Sanders

Security of Anonymous Credentials

• Anonymity:

- Issuance. No leakage of the secret key, nor concealed attributes
 - ✓ Hiding commitment, and Zero-Knowledge
- Showing. No leakage of the credential, secret, concealed attributes
 - Zero-Knowledge

- Unforgeability: Prevent three types of forgeries.
 - Impersonation. Forgery using an honest user's secret key
 - ✓ Reduction to Module-SIS with matrix D_s
 - Malicious Prover. Tricks verifiers in the zero-knowledge argument
 - \checkmark Soundness of the proof system
 - Signature Forgery. Forges a valid credential on fresh attributes/key
 - $\checkmark\,$ EUF-CMA security of our signature

Conclusion

Wrapping Up

Our contribution (https://ia.cr/2022/509)

- A (more) practical signature with efficient protocols, under standard or structured lattice assumptions.
- ☆ Orders of magnitude more efficient than [LLM⁺16].
- **Fix** of the approximate ZK proof system of [YAZ⁺19].
- First lattice-based anonymous credentials.

Related Work

	Assumptions	Interactive Assumption	cred
[LLM+16]	SIS	No	670 MB (appr. proof)
Ours	MSIS/MLWE	No	730 KB
[BLNS23]	$\frac{NTRU_{ISIS_f}}{Int_{NTRU}_{ISIS_f}}$	No Yes	243 KB 62 KB

Thank you for your attention!

Questions?

References

F

D. Boneh and X. Boyen.

Short signatures without random oracles and the SDH assumption in bilinear groups.

J. Cryptol., 2008.

- W. Beullens, V. Lyubashevsky, N. K. Nguyen, and G. Seiler.
 Lattice-based blind signatures: Short, efficient, and round-optimal.
 IACR Cryptol. ePrint Arch., page 77, 2023.
- 🥫 J. Camenisch and A. Lysyanskaya.

A signature scheme with efficient protocols.

In <u>SCN</u>, 2002.

J. Camenisch and A. Lysyanskaya.

Signature schemes and anonymous credentials from bilinear maps. In <u>CRYPTO</u>, 2004.

References

ii

- B. Libert, S. Ling, F. Mouhartem, K. Nguyen, and H. Wang.
 Signature schemes with efficient protocols and dynamic group signatures from lattice assumptions.
 - In ASIACRYPT, 2016.
- V. Lyubashevsky, N. K. Nguyen, and M. Plançon.
 - Lattice-based zero-knowledge proofs and applications: Shorter, simpler, and more general.

<u>CRYPTO</u>, 2022.

D. Pointcheval and O. Sanders.
 Short randomizable signatures.
 In <u>CT-RSA</u>, 2016.

R. Yang, M. H. Au, Z. Zhang, Q. Xu, Z. Yu, and W. Whyte. Efficient lattice-based zero-knowledge arguments with standard soundness: Construction and applications.

In <u>CRYPTO</u>, 2019.