On the Hardness of Module Learning With Errors with Short Distributions

Katharina Boudgoust¹, **Corentin Jeudy**^{2,3}, Adeline Roux-Langlois³, Weiqiang Wen⁴

¹ Aarhus University
 ² Orange Labs
 ³ Univ Rennes, CNRS, IRISA
 ⁴ Télécom Paris

Seminaire Algo - Oct. 11th, 2022

Reminder: Symmetric and Asymmetric Cryptography

Boudgoust, Jeudy, Roux-Langlois, Wen

The Need For Post-Quantum Cryptography

What if we had a Cryptographically Relevant Quantum ${\bf Computer}^1?$

- **Quadratic quantum speed-up** with **Grover**'s algorithm [Gro96]: exhaustive key search of \mathcal{P} in $O(\sqrt{\#\text{key space}})$;
- **Solution Exponential quantum speed-up** with **Shor**'s algorithm [Sho97]: factoring and discrete logarithm in $poly(\log n) \Longrightarrow$

The underlying hardness assumptions of modern cryptography (RSA, ECC) would no longer be valid.

Need: Design new cryptosystems from new mathematical problems that are hard to solve, even by a CRQC. And fast...

¹NSA FAQ on Quantum Computing and Post-Quantum Cryptography

NIST **PQC standardization process** launched in 2016. First round of standardized algorithms announced in July 2022:

Encryption	Signature	
Crystals-Kyber	Crystals-Dilithium	M-LWE
	Falcon	lattice based
	SPHINCS+	lattice-based

NSA has already announced its CNSA Suite 2.0 for Quantum-Resistant algorithms. It includes ${\sf Kyber}$ and ${\sf Dilithium}.$

How robust is Module Learning With Errors with such short distributions? **Let's see**

Problem Reduction Proof Secret Module Field Attack Cryptography Post-Quantum Distribution Security Vector

You Said Lattice?

You Said Lattice?

Given $\mathbf{A} \in \mathbb{Z}_{a}^{m \times d}$ describing the lattice

$$\mathcal{L}_q(oldsymbol{A}) = \{oldsymbol{x} \in \mathbb{Z}^m^: \exists oldsymbol{s} \in \mathbb{Z}^d_q, oldsymbol{A}oldsymbol{s} = oldsymbol{x} mmod q\}$$

and $t = As + e \mod q$, solve CVP_t on $\mathcal{L}_q(A)$. This is LWE!

Learning With Errors

where $\mathbf{A} \leftarrow \text{Unif}(\mathbb{Z}_q^{m \times d})$, $\mathbf{s} \leftarrow \mathcal{D}_{\mathbf{s}}$ (over \mathbb{Z}^d), and $\mathbf{e} \leftarrow \mathcal{D}_{\mathbf{e}}$ (over \mathbb{Z}^m).

Standard [Reg05]:	$\mathcal{D}_{s} = Unif(\mathbb{Z}_{q}^{d})$	$\mathcal{D}_e = Gauss(\mathbb{Z}^m)$
Binary Secret [BLP+13]:	$\mathcal{D}_{s} = Unif(\{0,1\}^{d})$	$\mathcal{D}_e = Gauss(\mathbb{Z}^m)$
Binary Error [MP13]:	$\mathcal{D}_{s} = Unif(\mathbb{Z}_{q}^{d})$	$\mathcal{D}_e = Unif(\{0,1\}^m)$

²The decision problem is to distinguish such **t** from Unif(\mathbb{Z}_{a}^{m})

Boudgoust, Jeudy, Roux-Langlois, Wen

Seminaire Algo - Oct. 11th, 2022

Reduce needed storage and speed-up computations by adding Structure

Adding an Algebraic Structure for More Efficiency

Replace
$$\mathbb{Z}$$
 with a ring $\mathcal{R} = \mathbb{Z}[x]/\langle f(x) \rangle$, e.g., $f(x) = x^n + 1$
with $n = 2^{\ell}$ and \mathbb{Z}_q by $\mathcal{R}_q = \mathbb{Z}_q[x]/\langle f(x) \rangle$

Efficiency: FFT-like algorithms, use of structured matrices. **Storage:** Structured matrices represented by a single vector.

Module Learning With Errors as Structured LWE

$$\underset{d}{ \square } \cdot t = A + e \xrightarrow{M-LWE^3} s$$

where $\mathbf{A} \leftrightarrow \text{Unif}(\mathcal{R}_q^{m \times d})$, $\mathbf{s} \leftarrow \mathcal{D}_{\mathbf{s}}$ (over \mathcal{R}^d), and $\mathbf{e} \leftarrow \mathcal{D}_{\mathbf{e}}$ (over \mathcal{R}^m). A good choice would be over $S_1 = \{0, 1\}[x]/\langle x^n + 1 \rangle$.

Structured version of LWE in dimensions nm & nd

³The decision problem is to distinguish such **t** from Unif(\mathcal{R}_q^m)

Boudgoust, Jeudy, Roux-Langlois, Wen

Seminaire Algo - Oct. 11th, 2022

What do we know so far?

Distributions	LWE	M-LWE
$egin{aligned} \mathcal{D}_{s} &= Unif(\mathcal{R}_{q}^{d}) \ \mathcal{D}_{e} &= Gauss(\mathcal{R}^{m}) \end{aligned}$	[Reg05] [BLP ⁺ 13]	[LS15] ?
$\mathcal{D}_{s} = Unif(S_{1}^{d})$ $\mathcal{D}_{e} = Gauss(\mathcal{R}^{m})$	[GKPV10] [BLP ⁺ 13] [Mic18]	? ? ?
$egin{aligned} \mathcal{D}_{s} &= Unif(\mathcal{R}_{q}^{d}) \ \mathcal{D}_{e} &= Unif(S_{1}^{m}) \end{aligned}$	[MP13]	?
$rac{\mathcal{D}_s}{\mathcal{D}_e} = \text{Gauss}(\mathcal{R}^m)$	[BD20a] [BD20b] (R-LWE)	[LWW20] ?

What do we know so far?

Distributions	LWE	M-LWE
$egin{aligned} \mathcal{D}_{s} &= Unif(\mathcal{R}_{q}^{d}) \ \mathcal{D}_{e} &= Gauss(\mathcal{R}^{m}) \end{aligned}$	[Reg05] [BLP ⁺ 13]	[LS15] ④ [BJRW20]
$\mathcal{D}_{s} = Unif(S_{1}^{d})$ $\mathcal{D}_{e} = Gauss(\mathcal{R}^{m})$	[GKPV10] [BLP ⁺ 13] [Mic18]	 [BJRW20] [BJRW21] ?
$ \begin{aligned} \mathcal{D}_{s} &= Unif(\mathcal{R}_{q}^{d}) \\ \mathcal{D}_{e} &= Unif(S_{1}^{m}) \end{aligned} $	[MP13]	6 [BJRW22b]
$rac{\mathcal{D}_s}{\mathcal{D}_e} = \text{Gauss}(\mathcal{R}^m)$	[BD20a] [BD20b] (R-LWE)	[LWW20]

1 M-LWE is still hard with small s and Gaussian e;

Today

- Decisional M-LWE is still hard with small s and Gaussian e;
- M-LWE is still hard with **small** *d* and *e*, if *m* is not too large.

And now...

Ocomputational Hardness of M-LWE with Short Secret

The secret z is small (S_1^d) and the secret s is large (\mathcal{R}_q^k) .

2 Pseudorandomness of M-LWE with Short Secret (1/2)

2 Pseudorandomness of M-LWE with Short Secret (2/2)

The secret z is small (S_1^d) and the secret s is large (\mathcal{R}_q^k) .

Hardness of Module-LWE with Short Secret: Sum-Up

Both proofs have their (dis)advantages

⁴In power-of-two cyclotomic fields, q must be prime such that $q = 5 \mod 8$.

Boudgoust, Jeudy, Roux-Langlois, Wen

Seminaire Algo - Oct. 11th, 2022

O Computational Hardness of M-LWE With Short Error

Idea: Prove that $(s, e) \mapsto As + e$ is one-way when e has small uniform coefficients. Reason on the dual function $e \mapsto B^T e$.

Uninvertible is not enough.

Result: It is one-way if **A** is not too tall, i.e., *m* not too large. Why?

Boudgoust, Jeudy, Roux-Langlois, Wen

Wrapping Up

Our contributions

✓ Hardness of a main problem, with (close to) practical parameters.

Lattice-based Cryptography

- **Most promising PQC successor** of RSA/ECC.
- Mathematical problems on lattices that are (confidently assumed) hard to solve even for a quantum computer.

What's next?

- **?** Keep **closing the gap** between provably secure parameter sets and the ones used in practice (small ones).
- Use these stretched assumptions to design efficient PQC schemes (done, see NIST) with additional features (ok there is still work to do).

Thank you for your attention!

Questions?

References

- Z. Brakerski and N. Döttling.
 Hardness of LWE on general entropic distributions.
 In <u>EUROCRYPT</u>, 2020.
- Z. Brakerski and N. Döttling.
 Lossiness and entropic hardness for ring-lwe.
 In <u>TCC</u>, 2020.
- K. Boudgoust, C. Jeudy, A. Roux-Langlois, and W. Wen.
 Towards classical hardness of module-lwe: The linear rank case.

In ASIACRYPT, 2020.

K. Boudgoust, C. Jeudy, A. Roux-Langlois, and W. Wen.
 On the hardness of module-lwe with binary secret.
 In CT-RSA, 2021.

References ii

- K. Boudgoust, C. Jeudy, A. Roux-Langlois, and W. Wen. Entropic hardness of module-lwe from module-ntru. IACR Cryptol. ePrint Arch., page 245, 2022.
- K. Boudgoust, C. Jeudy, A. Roux-Langlois, and W. Wen.
 On the hardness of module learning with errors with short distributions.

IACR Cryptol. ePrint Arch., page 472, 2022.

- Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé.
 Classical hardness of learning with errors.
 In <u>STOC</u>, 2013.
- 🔋 S. Goldwasser, Y. Tauman Kalai, C. Peikert, and V. Vaikuntanathan.

Robustness of the learning with errors assumption.

In <u>ICS</u>, 2010.

References iii

Lov K. Grover.

A fast quantum mechanical algorithm for database search. In <u>STOC</u>, pages 212–219. ACM, 1996.

A. Langlois and D. Stehlé.

Worst-case to average-case reductions for module lattices. Des. Codes Cryptogr., 2015.

📔 H. Lin, Y. Wang, and M. Wang.

Hardness of module-lwe and ring-lwe on general entropic distributions.

IACR Cryptol. ePrint Arch., page 1238, 2020.

D. Micciancio.

On the hardness of learning with errors with binary secrets. Theory Comput., 2018.

References iv

D. Micciancio and C. Peikert. Hardness of SIS and LWE with small parameters. In CRYPTO, 2013.

O. Regev.

On lattices, learning with errors, random linear codes, and cryptography.

In STOC, 2005.

P. W. Shor.

Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer.

SIAM Journal on Computing, 26:1484–1509, 1997.