On the Hardness of Module Learning With Errors with Short Distributions

Katharina Boudgoust ${ }^{1}$, Corentin Jeudy ${ }^{2,3}$, Adeline Roux-Langlois ${ }^{3}$, Weiqiang Wen ${ }^{4}$
${ }^{1}$ Aarhus University
${ }^{2}$ Orange Labs
${ }^{3}$ Univ Rennes, CNRS, IRISA
${ }^{4}$ Télécom Paris

Seminaire Algo - Oct. 11th, 2022

Reminder: Symmetric and Asymmetric Cryptography

Symmetric Cryptography

! Alice and Bob must agree on the same key

Asymmetric Cryptography

The Need For Post-Quantum Cryptography

What if we had a Cryptographically Relevant Quantum Computer ${ }^{1}$?

^ Quadratic quantum speed-up with Grover's algorithm [Gro96]: exhaustive key search of ρ in $O(\sqrt{\# \text { key space }})$;

Exponential quantum speed-up with Shor's algorithm [Sho97]: factoring and discrete logarithm in poly $(\log n) \Longrightarrow \int$

The underlying hardness assumptions of modern cryptography (RSA, ECC) would no longer be valid.

Need: Design new cryptosystems from new mathematical problems that are hard to solve, even by a CRQC. And fast...
${ }^{1}$ NSA FAQ on Quantum Computing and Post-Quantum Cryptography

Potential Candidates: NIST PQC Standardization

NIST PQC standardization process launched in 2016. First round of standardized algorithms announced in July 2022:

Encryption	Signature
Crystals-Kyber	Crystals-Dilithium
	Falcon
	SPHINCS +

NSA has already announced its CNSA Suite 2.0 for Quantum-Resistant algorithms. It includes Kyber and Dilithium.

How robust is Module Learning With Errors with such short distributions? Let's see

Problem Reduction
 Proof Secret oaute
 Key Field
 Cryptography
 Post-Quantum
 Distribution
 Security
 Errofor

You Said Lattice?

Given a target \boldsymbol{t}, find $\boldsymbol{x} \in \mathcal{L}$ that minimizes $\|\boldsymbol{x}-\boldsymbol{t}\|$.

You Said Lattice?

Euclidean Lattice

$\mathcal{L}=\left\{B ; x \in \mathbb{Z}^{n}\right\}$ with basis $B \in \mathbb{R}^{n \times n}$.

Given a target \boldsymbol{t}, find $\boldsymbol{x} \in \mathcal{L}$ that minimizes $\|\boldsymbol{x}-\boldsymbol{t}\|$.

Given $\boldsymbol{A} \in \mathbb{Z}_{q}^{m \times d}$ describing the lattice

$$
\mathcal{L}_{q}(\boldsymbol{A})=\left\{\boldsymbol{x} \in \mathbb{Z}^{m}: \exists \boldsymbol{s} \in \mathbb{Z}_{q}^{d}, \boldsymbol{A} \boldsymbol{s}=\boldsymbol{x} \bmod q\right\}
$$

and $\boldsymbol{t}=\boldsymbol{A s}+e \bmod q$, solve $\mathbf{C V P}_{\boldsymbol{t}}$ on $\mathcal{L}_{q}(\boldsymbol{A})$. This is LWE!

Learning With Errors

Set $\mathbb{Z}_{q}=\mathbb{Z} / q \mathbb{Z}$ for some integer q.

where $\boldsymbol{A} \hookleftarrow \operatorname{Unif}\left(\mathbb{Z}_{q}^{m \times d}\right)$, $\boldsymbol{s} \hookleftarrow \mathcal{D}_{s}\left(\right.$ over $\left.\mathbb{Z}^{d}\right)$, and $e \hookleftarrow \mathcal{D}_{e}\left(\right.$ over $\left.\mathbb{Z}^{m}\right)$.

$$
\begin{array}{lll}
\text { Standard [Reg05]: } & \mathcal{D}_{s}=\operatorname{Unif}\left(\mathbb{Z}_{q}^{d}\right) & \mathcal{D}_{e}=\operatorname{Gauss}\left(\mathbb{Z}^{m}\right) \\
\text { Binary Secret }[B L P+13]: & \mathcal{D}_{s}=\operatorname{Unif}\left(\{0,1\}^{d}\right) & \mathcal{D}_{e}=\operatorname{Gauss}\left(\mathbb{Z}^{m}\right) \\
\text { Binary Error [MP13]: } & \mathcal{D}_{s}=\operatorname{Unif}\left(\mathbb{Z}_{q}^{d}\right) & \mathcal{D}_{e}=\operatorname{Unif}\left(\{0,1\}^{m}\right)
\end{array}
$$

[^0]Reduce needed storage and
speed-up computations by adding Structure

Adding an Algebraic Structure for More Efficiency

Replace \mathbb{Z} with a ring $\mathcal{R}=\mathbb{Z}[x] /\langle f(x)\rangle$, e.g., $f(x)=x^{n}+1$ with $n=2^{\ell}$ and \mathbb{Z}_{q} by $\mathcal{R}_{q}=\mathbb{Z}_{q}[x] /\langle f(x)\rangle$

$$
\sum_{i=0}^{n-1} a_{i} \cdot x^{i} \in \mathcal{R} \stackrel{\text { embedding }}{\longleftrightarrow}\left[\begin{array}{c}
a_{0} \\
\vdots \\
a_{n-1}
\end{array}\right] \in \mathbb{Z}^{n}
$$

$$
\left(\sum_{i=0}^{n-1} a_{i} \cdot x^{i}\right) \cdot\left(\sum_{i=0}^{n-1} b_{i} \cdot x^{i}\right) \longleftrightarrow \text { Rot (a) }\left[\begin{array}{c}
b_{0} \\
\vdots \\
b_{n-1}
\end{array}\right]
$$

Efficiency: FFT-like algorithms, use of structured matrices.
Storage: Structured matrices represented by a single vector.

Module Learning With Errors as Structured LWE

where $\boldsymbol{A} \hookleftarrow \operatorname{Unif}\left(\mathcal{R}_{q}^{m \times d}\right), \boldsymbol{s} \hookleftarrow \mathcal{D}_{s}\left(\right.$ over $\left.\mathcal{R}^{d}\right)$, and $e \hookleftarrow \mathcal{D}_{e}\left(\right.$ over $\left.\mathcal{R}^{m}\right)$.
A good choice would be over $S_{1}=\{0,1\}[x] /\left\langle x^{n}+1\right\rangle$.

Structured version of LWE in dimensions $n m$ \& $n d$

[^1]
What do we know so far?

Distributions	LWE	M-LWE
$\mathcal{D}_{s}=\operatorname{Unif}\left(\mathcal{R}_{q}^{d}\right)$	[Reg05]	[LS15]
$\mathcal{D}_{e}=\operatorname{Gauss}\left(\mathcal{R}^{m}\right)$	[BLP $\left.{ }^{+13}\right]$?
$\begin{aligned} & \mathcal{D}_{s}=\operatorname{Unif}\left(S_{1}^{d}\right) \\ & \mathcal{D}_{e}=\operatorname{Gauss}\left(\mathcal{R}^{m}\right) \end{aligned}$	[GKPV10]	?
	[BLP $\left.{ }^{+13}\right]$?
	[Mic18]	?
$\begin{aligned} & \mathcal{D}_{s}=\operatorname{Unif}\left(\mathcal{R}_{q}^{d}\right) \\ & \mathcal{D}_{e}=\operatorname{Unif}\left(S_{1}^{m}\right) \end{aligned}$	[MP13]	?
\mathcal{D}_{s} arbitrary	[BD20a]	[LWW20]
$\mathcal{D}_{e}=\operatorname{Gauss}\left(\mathcal{R}^{m}\right)$	[BD20b] (R-LWE)	?

What do we know so far?

Distributions	LWE	M-LWE
$\mathcal{D}_{s}=\operatorname{Unif}\left(\mathcal{R}_{q}^{d}\right)$	[Reg05]	[LS15]
$\mathcal{D}_{e}=\operatorname{Gauss}\left(\mathcal{R}^{m}\right)$	[BLP $\left.{ }^{+13}\right]$	(4) [BJRW20]
$\begin{aligned} & \mathcal{D}_{s}=\operatorname{Unif}\left(S_{1}^{d}\right) \\ & \mathcal{D}_{e}=\operatorname{Gauss}\left(\mathcal{R}^{m}\right) \end{aligned}$	[GKPV10]	(1) [BJRW20]
	[BLP $\left.{ }^{+13}\right]$	(2) [BJRW21]
	[Mic18]	?
$\begin{aligned} & \mathcal{D}_{s}=\operatorname{Unif}\left(\mathcal{R}_{q}^{d}\right) \\ & \mathcal{D}_{e}=\operatorname{Unif}\left(S_{1}^{m}\right) \end{aligned}$	[MP13]	(3) [BJRW22b]
\mathcal{D}_{s} arbitrary	[BD20a]	[LWW20]
$\mathcal{D}_{e}=\operatorname{Gauss}\left(\mathcal{R}^{m}\right)$	[BD20b] (R-LWE)	5 [BJRW22a]

(1) M-LWE is still hard with small s and Gaussian e;

Today (2) Decisional M-LWE is still hard with small s and Gaussian e;
(3) M-LWE is still hard with small d and e, if m is not too large.

And now...

(1) Computational Hardness of M-LWE with Short Secret

The secret z is small $\left(S_{1}^{d}\right)$ and the secret \boldsymbol{s} is large $\left(\mathcal{R}_{q}^{k}\right)$.

(2) Pseudorandomness of M-LWE with Short Secret (1/2)

(2) Pseudorandomness of M-LWE with Short Secret (2/2)

The secret z is small $\left(S_{1}^{d}\right)$ and the secret \boldsymbol{s} is large $\left(\mathcal{R}_{q}^{k}\right)$.

Hardness of Module-LWE with Short Secret: Sum-Up

Standard M-LWE $\xrightarrow{\text { Reduction }}$ Short Secret M-LWE

$$
\text { modulus } q
$$

ring degree n
secret $s \in \mathcal{R}_{q}^{k}$
Gaussian width α rank k
modulus q
ring degree n
secret $z \in S_{1}^{d}$
Gaussian width β
rank d

Property	Contribution (1)	Contribution (2)
Minimal rank d	$k \log q+\Omega(\log n)$	$(k+1) \log q+\omega(\log n)$
Noise ratio β / α	$O\left(n^{2} \sqrt{m} d\right)$	$O\left(n^{2} \sqrt{d}\right)$
Conditions on q	prime	other restrictions ${ }^{4}$
Decision/Search	search	decision

Both proofs have their (dis)advantages

[^2]
3 Computational Hardness of M-LWE With Short Error

Idea: Prove that $(\boldsymbol{s}, \boldsymbol{e}) \mapsto \boldsymbol{A} \boldsymbol{s}+\boldsymbol{e}$ is one-way when \boldsymbol{e} has small uniform coefficients. Reason on the dual function $\boldsymbol{e} \mapsto \boldsymbol{B}^{T} \boldsymbol{e}$.

Uninvertible is not enough.

Result: It is one-way if \boldsymbol{A} is not too tall, i.e., m not too large. Why?

Lots of 0 if e has small coefficients

Wrapping Up

Our contributions

\checkmark Hardness of a main problem, with (close to) practical parameters.

Lattice-based Cryptography

O Most promising PQC successor of RSA/ECC.
\$8 Mathematical problems on lattices that are (confidently assumed) hard to solve even for a quantum computer.

What's next?
? Keep closing the gap between provably secure parameter sets and the ones used in practice (small ones).
\approx Use these stretched assumptions to design efficient PQC schemes (done, see NIST) with additional features (ok there is still work to do).

Thank you for your attention!

Questions?

References

(Z. Brakerski and N. Döttling. Hardness of LWE on general entropic distributions.
In EUROCRYPT, 2020.
䡒 Z. Brakerski and N. Döttling.
Lossiness and entropic hardness for ring-lwe.
In TCC, 2020.
R. Boudgoust, C. Jeudy, A. Roux-Langlois, and W. Wen.

Towards classical hardness of module-Iwe: The linear rank case.
In ASIACRYPT, 2020.
R. K. Boudgoust, C. Jeudy, A. Roux-Langlois, and W. Wen.

On the hardness of module-Iwe with binary secret.
In CT-RSA, 2021.

References

囯 K．Boudgoust，C．Jeudy，A．Roux－Langlois，and W．Wen． Entropic hardness of module－Iwe from module－ntru． IACR Cryptol．ePrint Arch．，page 245， 2022.
圊 K．Boudgoust，C．Jeudy，A．Roux－Langlois，and W．Wen． On the hardness of module learning with errors with short distributions．
IACR Cryptol．ePrint Arch．，page 472， 2022.
R Z．Brakerski，A．Langlois，C．Peikert，O．Regev，and D．Stehlé．
Classical hardness of learning with errors．
In STOC， 2013.
國 S．Goldwasser，Y．Tauman Kalai，C．Peikert，and V．Vaikuntanathan．

Robustness of the learning with errors assumption．
In ICS， 2010.

Lov K. Grover.
A fast quantum mechanical algorithm for database search.
In STOC, pages 212-219. ACM, 1996.
R A. Langlois and D. Stehlé.
Worst-case to average-case reductions for module lattices.
Des. Codes Cryptogr., 2015.
目 H. Lin, Y. Wang, and M. Wang.
Hardness of module-lwe and ring-Iwe on general entropic distributions.
IACR Cryptol. ePrint Arch., page 1238, 2020.
围
D. Micciancio.

On the hardness of learning with errors with binary secrets. Theory Comput., 2018.
(R. Micciancio and C. Peikert.

Hardness of SIS and LWE with small parameters.
In CRYPTO, 2013.
围
O. Regev.

On lattices, learning with errors, random linear codes, and cryptography.
In STOC, 2005.
©
P. W. Shor.

Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer.
SIAM Journal on Computing, 26:1484-1509, 1997.

[^0]: ${ }^{2}$ The decision problem is to distinguish such t from $\operatorname{Unif}\left(\mathbb{Z}_{q}^{m}\right)$

[^1]: ${ }^{3}$ The decision problem is to distinguish such t from $\operatorname{Unif}\left(\mathcal{R}_{q}^{m}\right)$

[^2]: ${ }^{4}$ In power-of-two cyclotomic fields, q must be prime such that $q=5 \bmod 8$.

