Entropic Hardness of Module-LWE from Module-NTRU

Corentin JEUDY

Joint work with Katharina Boudgoust, Adeline Roux-Langlois and Weiqiang Wen

JC2, Hendaye - April 11th, 2022

Orange Labs, Univ Rennes, CNRS, IRISA

ePrint 2022/245, Submitted to DCC Journal

C. JEUDY

Entropic Hardness of M-LWE

JC2, Hendaye - April 11th, 2022

NIST PQC standardization process launched in 2016. Finalists announced in July 2020¹:

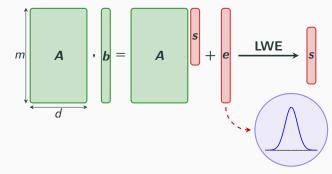
Encryption	Signature	
Crystals-Kyber Saber	Crystals-Dilithium	M-LWE & co
NTRU	Falcon	lattice-based
Classic McEliece	Rainbow 🛕	

Important to study the **hardness** of the underlying assumptions e.g. M-LWE

¹Third round "winners" were supposed to be announced at the end of March. We must wait a bit longer.

Warm-Up: The Learning With Errors (LWE) Problem

The Learning With Errors problem was introduced in [Reg05]².

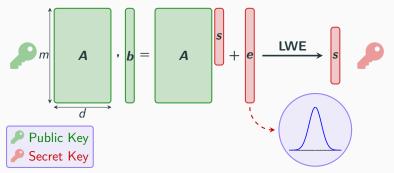


where $\mathbf{A} \hookrightarrow \mathcal{U}(\mathbb{Z}_q^{m \times d})$, $\mathbf{s} \hookrightarrow \mathcal{U}(\mathbb{Z}_q^d)$, and \mathbf{e} Gaussian. **LWE** is proven to be at least as hard as hard problems on lattices.

²O. Regev, On Lattices, Learning With Errors, Random Linear Codes, and Cryptography, STOC'05

Warm-Up: The Learning With Errors (LWE) Problem

The Learning With Errors problem was introduced in [Reg05]².



where $\mathbf{A} \hookrightarrow \mathcal{U}(\mathbb{Z}_q^{m \times d})$, $\mathbf{s} \hookrightarrow \mathcal{U}(\mathbb{Z}_q^d)$, and \mathbf{e} Gaussian. **LWE** is proven to be at least as hard as hard problems on lattices.

Key Recovery for PKE is exactly the LWE problem

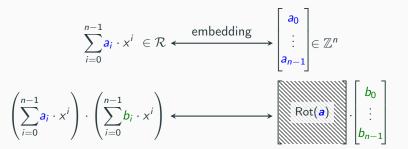
²O. Regev, On Lattices, Learning With Errors, Random Linear Codes, and Cryptography, STOC'05

1. Physical attack to recover a noisy secret \tilde{s} .

2. Target a new LWE instance with

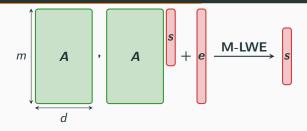
$$\Delta b = b - A ilde{s} = egin{array}{c} 0 \ ar{s} \ ar$$

Under what condition on \bar{s} is the problem still hard? \bar{s} must have enough entropy \longrightarrow Entropic hardness Replace \mathbb{Z} with a ring $\mathcal{R} = \mathbb{Z}[x]/\langle f(x) \rangle$, e.g., $f(x) = x^n + 1$ with $n = 2^{\ell}$ and \mathbb{Z}_q by $\mathcal{R}_q = \mathbb{Z}_q[x]/\langle f(x) \rangle$



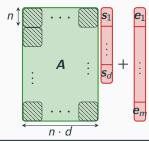
Efficiency: FFT-like algorithms, use of structured matrices. **Storage:** Structured matrices represented by a single vector.

Module-LWE as Structured-LWE



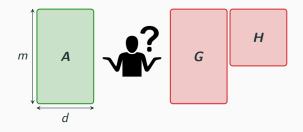
where $\mathbf{A} \leftrightarrow \mathcal{U}(\mathcal{R}_q^{m \times d})$, $\mathbf{s} \leftrightarrow \mathcal{U}(\mathcal{R}_q^d)$, and \mathbf{e} Gaussian.

It can be seen as a Structured LWE (S-LWE) with dimensions nm & nd.



Entropic Hardness of M-LWE

What about Module-NTRU?



where $\mathbf{A} \leftarrow \mathcal{U}(\mathcal{R}_q^{m \times d})$, \mathbf{G}, \mathbf{F} Gaussian, and $\mathbf{H} = (\mathbf{F} \mod q\mathcal{R})^{-1}$.

LWE	M-LWE
[BD20a] ³	[LWW20] ⁴ (ePrint)
[BD20b] ⁵ (R-LWE)	🚖 Today

Our contribution:

† M-LWE is hard with **arbitrary** *s*, if *s* has enough entropy.

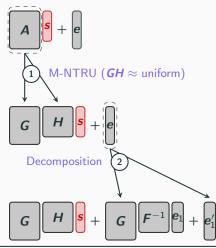
³Z. Brakerski, N. Döttling, Hardness of LWE on General Entropic Distribution, EUROCRYPT'20

⁴H. Lin, Y. Wang, M. Wang, Hardness of Module-LWE and Ring-LWE on General Entropic Distribution

⁵Z. Brakerski, N. Döttling, *Lossiness and Entropic Hardness for Ring-LWE*, TCC'20

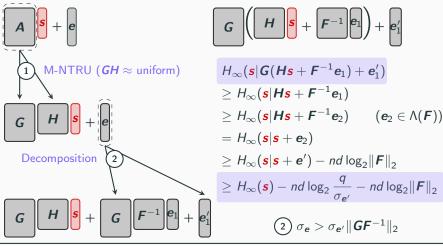
Entropic Hardness of M-LWE

Replacing **A** by **GH**, with **F**, **G** Gaussian and **H** the mod-q inverse of **F**. The secret **s** is only assumed to have **large enough entropy**. Based on the work by Brakerski and Döttling [BD20b] on R-LWE.



Entropic Hardness of M-LWE

Replacing **A** by **GH**, with **F**, **G** Gaussian and **H** the mod-q inverse of **F**. The secret **s** is only assumed to have **large enough entropy**. Based on the work by Brakerski and Döttling [BD20b] on R-LWE.



Entropic Hardness of M-LWE

Our contribution

 Reduction from Module-NTRU to Module-LWE with general⁶ secret distributions.

Related Work

- Other reduction in [LWW20] from Module-LWE (uniform secret) to Module-LWE (general secret).
 - × Not rank-preserving.
 - Assumption proven on module lattices.
 - = Parameter regimes with sometimes better or worse results.

Open Questions

- ? Reduction from module lattice problems to Module-NTRU?
- Prove the hardness of Module-LWE with low-entropy secret distributions without increasing the rank?

⁶with some restrictions though

Thank you for your attention!

Questions?

Z. Brakerski and N. Döttling.

Hardness of LWE on general entropic distributions.

In EUROCRYPT (2), volume 12106 of Lecture Notes in Computer Science, pages 551–575. Springer, 2020.

Z. Brakerski and N. Döttling.

Lossiness and entropic hardness for ring-lwe.

In *TCC (1)*, volume 12550 of *Lecture Notes in Computer Science*, pages 1–27. Springer, 2020.

H. Lin, Y. Wang, and M. Wang.
Hardness of module-lwe and ring-lwe on general entropic distributions.

IACR Cryptol. ePrint Arch., page 1238, 2020.

O. Regev.

On lattices, learning with errors, random linear codes, and cryptography.

In STOC, pages 84-93. ACM, 2005.