RSNConference2021

May 17-20 | Virtual Experience

SESSION ID: CRYP-W13C

On the Hardness of Module-LWE with Binary Secrets

Corentin Jeudy

Research Intern
Univ Rennes, CNRS, IRISA
Co-authors: Katharina Boudgoust, Adeline Roux-Langlois, Weiqiang Wen

Our Result (https://ia.cr/2021/265)

We (im)prove the theoretical hardness of Module Learning With Errors with Binary Secrets

- Over cyclotomic fields (degree n)
- For a super-logarithmic module rank: $d=\omega(\log n)$
- Down to linearly small modulus: $q \geq 2 n$
- With a small noise increase: $\beta=\alpha \cdot \Theta\left(n^{2} \sqrt{d}\right)$

We reduce the gap between theoretical and practical hardness when using small secrets

Module Learning With Errors (M-LWE)

The M-LWE problem asks to distinguish between two cases:

where $\boldsymbol{A} \hookleftarrow U\left(R_{q}^{k \times m}\right), \boldsymbol{s} \hookleftarrow U\left(R_{q}^{k}\right), \boldsymbol{e} \hookleftarrow D_{R, \alpha q}^{m}$, and $\boldsymbol{b} \hookleftarrow U\left(R_{q}^{m}\right)$
$R=\mathbb{Z}[x] /\langle\Phi(x)\rangle$ is a cyclotomic ring with $\operatorname{deg}(\Phi)=n$. A popular choice is $n=2^{\ell}$ yielding $\Phi(x)=x^{n}+1$. We work in $R_{q}=\mathbb{Z}_{q}[x] /\langle\Phi(x)\rangle$.

Binary Secrets: s chosen from $R_{2}^{k}=\left(\mathbb{Z}_{2}[x] /\langle\Phi(x)\rangle\right)^{k}$
Edge cases: LWE ($n=1 \Rightarrow R=\mathbb{Z}$) and R-LWE $(k=1)$

Apply Module－LWE，Why Do We Care？

－Key Encapsulation Mechanisms
－CRYSTALS－KYBER［BDK＋18］：based on Module－LWE
－SABER［DKRV18］：based on Module－LWR（deterministic）

fignature Schemes

－CRYSTALS－DILITHIUM［DKL＋18］：based on Module－LWE
＂In NIST＇s current view，these structured lattice schemes appear to be the most promising general－ purpose algorithms for public－key encryption／KEM and digital signature schemes．＂，Third Round Candidate Announcement，July 22， 2020

Proof Structure following [BLP+13]

First-is-errorless M-LWE to Extended M-LWE: Construction

Reduction from first-is-errorless M-LWE to ext-M-LWE requires to construct, for any given $\mathbb{Z} \in R_{2}^{d}$, a matrix \boldsymbol{U}_{Z} such that

- \boldsymbol{U}_{z} is invertible in R_{q}
- $\left(U_{Z}^{\perp}\right)^{T} Z=\mathbf{0}$
- with minimal spectral norm (characterizes the noise growth)

Reduction to bin-M-LWE: Lossy Argument

Lossy argument: replacing \boldsymbol{A} by $\hat{\boldsymbol{A}}=\boldsymbol{B C}+\boldsymbol{N}$. The secret z is binary and the secret s is modulo q.

Conclusion

E Related Work
－Setting $n=1$ yields the result from［BLP＋13］
－Our previous reduction［BJRW20］achieves similar rank d and modulus q ，but larger noise growth $\beta / \alpha=\Theta\left(n^{2} d \sqrt{m}\right)$ ．We improve it by a factor of $\sqrt{m d}$

？Open Problems

－Smaller ranks：rank $d=1$（R－LWE）
－Other number fields than cyclotomics

RS^Conference2021

Thank You!

```
[BDK+18] J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehlé.
    CRYSTALS - Kyber: A CCA-secure Module-Lattice-based KEM.
    In 2018 IEEE European Symposium on Security and Privacy, EuroS&P 2018, London, United Kingdom, April 24-26, 2018,
    pages 353-367, }2018
[BJRW20] K. Boudgoust, C. Jeudy, A. Roux-Langlois, W. Wen.
        Towards Classical Hardness of Module-LWE: The Linear Rank Case.
        In Advances in Cryptology - ASIACRYPT 2020 - 26th International Conference on the Theory and Application of Cryptology
        and Information Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part II, volume }12492\mathrm{ of Lecture
        Notes in Computer Science, pages 289-317. Springer, }202
    [BLP+13] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé.
        Classical Hardness of Learning With Errors.
        In Symposium on Theory of Computing Conference, STOC'13, Palo Alto, CA, USA, June 1-4, 2013, pages 575-584, }2013
[DKL+18] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehlé.
        CRYSTALS - Dilithium: A Lattice-based Digital Signature Scheme.
        IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(1):238-268, }2018
[DKRV18] J.-P. D'Anvers, A. Karmakar, S. Sinha Roy, and F. Vercauteren.
    SABER: Module-LWR based Key Exchange, CPA-secure Encryption and CCA-secure KEM.
    In Progress in Cryptology - AFRICACRYPT 2018 - 10th International Conference on Cryptology in Africa, Marrakesh,
    Morocco, May 7-9, 2018, Proceedings, pages 282-305, }2018
```


[LS18] V. Lyubashevsky and G. Seiler

Short, Invertible Elements in Partially Splitting Cyclotomic Rings and Applications to Lattice-based Zero-Knowledge Proofs.
In Advances in Cryptology - EUROCRYPT 2018-37th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018, Proceedings, Part I, volume 10820 of Lecture Notes in Computer Science, pages 204-224. Springer, 2018.

