
Lattice-Based Cryptography

M2 Graduate Course, Research Specialization - Rennes University

Corentin Jeudy (Orange)
corentin.jeudy@orange.com

mailto:corentin.jeudy@orange.com

Contents

Contents 2

I Security Notions 5

1 Definition of Security 6
1.1 Perfect Security . 6

1.1.1 One Time Pad . 6
1.1.2 Shannon’s Theorem . 8

1.2 Defining Security . 9
1.2.1 Perfect Security versus Computational Security 9
1.2.2 Indistinguishability . 10

1.3 Security Models . 13
1.3.1 Public-Key Encryption . 13
1.3.2 Digital Signature . 16
1.3.3 Hash Functions . 17

1.4 Provable Security . 19
1.4.1 Security Proofs . 19

II Lattice Theory 22

2 Lattices 23
2.1 Reminder in Linear Algebra . 23
2.2 Fundamentals of Lattices . 24

2.2.1 Lattice Bases . 26
2.2.2 Fundamental Invariants . 27
2.2.3 Minkowski’s Theorem . 30
2.2.4 Dual Lattice . 32

2.3 Gram-Schmidt Orthogonalization . 34
2.3.1 Orthogonality . 34
2.3.2 Gram-Schmidt Process . 35
2.3.3 Gram-Schmidt Minimum . 37

2.4 Lattice Reduction . 38
2.4.1 Gauss-Lagrange Reduction: Size-Reduced Basis 38
2.4.2 The LLL Algorithm . 40

3 Hard Problems on Lattices 42
3.1 Complexity Classes . 42
3.2 Shortest and Closest Vector Problems . 43

3.2.1 Shortest Vector Problem and Variants . 43
3.2.2 Closest Vector Problem and Variants . 46

3.3 Hardness of SVP and CVP . 47
3.3.1 NP-Completeness of dCVP . 47
3.3.2 Equivalence of CVP and dCVP . 49

2 Go to Contents !

3.3.3 Reduction from Approx-GapSVP to Approx-GapCVP 51
3.3.4 Hardness of Approx-GapCVP . 51
3.3.5 Some Lattice Reduction Solvers . 52

III Foundations of Lattice-Based Cryptography 54

4 Gaussian Distributions over Lattices 55
4.1 Definition of Discrete Gaussians . 55

4.1.1 Continuous Multidimensional Gaussian Distributions 56
4.1.2 Discrete Gaussian Distributions . 56

4.2 Paramètre de Lissage . 56
4.2.1 Fourier Transform and Poisson Summation Formula 57
4.2.2 Regularity and Smoothing Parameter . 58

4.3 Properties of Discrete Gaussians . 59
4.3.1 Basic Properties . 59
4.3.2 Gaussian Tail Bounds . 62

4.4 Sampling Gaussians over Lattices . 62
4.4.1 Klein Sampler . 63

5 Fundamental Problems: SIS and LWE 66
5.1 Short Integer Solution . 66

5.1.1 Problem Definitions . 66
5.1.2 Hardness of Short Integer Solution . 68
5.1.3 Application: Ajtai Hash Function . 69

5.2 Learning With Errors . 70
5.2.1 Problem Definitions . 71
5.2.2 Computational-Decisional Equivalence . 73
5.2.3 Hardness of Learning With Errors . 74

IV Constructions 78

6 Public-Key Encryption from LWE 79
6.1 Regev Encryption Scheme . 79

6.1.1 Description . 79
6.1.2 Security Analysis . 80

6.2 Dual Regev Encryption Scheme . 82
6.2.1 Description . 82
6.2.2 Security Analysis . 83

7 Signature Schemes 87
7.1 Fiat-Shamir with Aborts Paradigm . 87

7.1.1 From Identification to Signature . 87
7.1.2 Description . 88

7.2 Lattice Trapdoors . 89
7.2.1 Short Bases and Trapdoor Construction . 90
7.2.2 Trapdoor Usage . 90

7.3 GPV Hash-and-Sign Paradigm . 93
7.3.1 Description . 93
7.3.2 Security Analysis . 94

7.4 Standard Model Signatures . 97

V Efficient Constructions and Standards 100

8 Algebraic Lattices and Structured Problems 101
8.1 Algebraic Number Theory . 101

8.1.1 Intuition . 101
8.1.2 How to Choose the Defining Polynomial f? 102
8.1.3 Coefficient Embedding and Multiplication Matrix 102

8.2 Structured Problems . 103

! Go to Contents 3

8.2.1 Fundamental Problems over Algebraic Rings 104
8.2.2 Generalization to Modules . 106

8.3 Future Post-Quantum Cryptography Standards from Lattices 108

9 ML-KEM : Crystals-Kyber 111
9.1 Crystals-Kyber: IND-CPA Public Key Encryption 111

9.1.1 Algebraic Structure . 112
9.1.2 Error Distributions . 112
9.1.3 Compression . 113
9.1.4 Description de Kyber . 115

9.2 ML-KEM: IND-CCA Key Encapsulation Mechanism 116
9.3 Comparison with Elliptic Curve Diffie-Hellman . 117

10 ML-DSA: Crystals-Dilithium 120
10.1 Improvements on Lyubashevsky’s Signature . 120

10.1.1 Algebraic Structure . 120
10.1.2 Simpler Rejection: Uniform Distributions 121
10.1.3 Signature Compression . 122
10.1.4 Public Key Compression . 123

10.2 Description of ML-DSA: Crystals-Dilithium . 123
10.3 Comparison with Elliptic Curve Digital Signature Algorithm 125

4 Go to Contents !

Part I

Security Notions

]

This first part recalls the common security notions necessary in public key
cryptography.

1. DEFINITION OF SECURITY

1

Definition of Security

Cryptography is a science which aims at designing algorithms that achieve specific security proper-
ties. For example, the goal of encryption is to provide confidentiality of data (at rest or in transit),
while that of digital signature is to ensure integrity and authenticity of data. It is thus necessary to
define algorithms and protocols but also formally model the security notions we expect from them.
In public-key cryptography, the security of primitives is based on computational assumptions which
must be well-defined and widely studied so that we can trust the security of our constructions. For
example, the encryption (and signature) RSA are linked to the factorization problem, while the
Diffie-Hellman key exchange is based on the discrete logarithm problem. Finally, each construction
requires a proof of security, meaning a proof that the primitive meets the security requirements
defined by the model. Usually, we prove that if an adversary can attack the construction (the type
of attack is defined by the security model), then there exists an efficient algorithm that can solve
a hard computational problem.

The protocols should be public and analyzed by the community to be considered secure. The
security must rely on the underlying computational assumption and the good choice of the key,
and not on the secrecy of the algorithm itself.

Contents
1.1 Perfect Security . 6

1.1.1 One Time Pad . 6
1.1.2 Shannon’s Theorem . 8

1.2 Defining Security . 9
1.2.1 Perfect Security versus Computational Security 9
1.2.2 Indistinguishability . 10

1.3 Security Models . 13
1.3.1 Public-Key Encryption . 13
1.3.2 Digital Signature . 16
1.3.3 Hash Functions . 17

1.4 Provable Security . 19
1.4.1 Security Proofs . 19

1.1 Perfect Security
1.1.1 One Time Pad
Before entering the details of security models used in cryptography, we start by the historical
result of Shannon of a perfectly secure cipher. A cipher is the usual term to denote a symmetric
encryption scheme.

Definition 1.1 (Symmetric Encryption Scheme)

Let K,M and C be three sets called key space, plaintext (or message) space and ciphertext
space respectively. A symmetric encryption scheme is defined by three algorithms KeyGen,

6 Go to Contents !

1.1. PERFECT SECURITY

Enc and Dec as follows.

• KeyGen: Selects a key k ∈ K.

• Enc: Takes a key k ∈ K, a plaintext m ∈M and outputs a ciphertext c ∈ C.

• Dec: Takes a key k ∈ K, a ciphertext c ∈ C and outputs a plaintext m ∈M.

The encryption scheme must be correct, i.e., verifying

∀k ∈ K,∀m ∈M,Dec(k,Enc(k,m)) = m

Claude Shannon defined the notion of perfect secrecy. It captures the idea that an adversary
cannot learn anything about a message m given a ciphertext of m alone, even if it knows the
probability distribution of the plaintexts.

Definition 1.2 (Perfect Secrecy)

Let (KeyGen,Enc,Dec) be a symmetric cipher with key space K, message spaceM and cipher-
text space C. Let P be a probability distribution onM and Q be the probability distribution
defined by Enc(KeyGen(), P). Let M,C be random variables distributed according to P and
Q respectively. The cipher is said perfectly secure if for all m ∈ Supp(P) and all c ∈ Supp(Q),
it holds that

P[M = m|C = c] = P[M = m]

We can then construct the One Time Pad and prove that it is both correct and perfectly secure.
Let use define the three algorithms. Let ℓ be a positive integer defining K =M = C = {0, 1}ℓ.

Algorithm 1.1: KeyGen (One Time Pad)
Input: 1ℓ

1. k ←↩ U({0, 1}ℓ)

Output: k

Algorithm 1.2: Enc (One Time Pad)
Input: Key k ∈ {0, 1}ℓ, Message m ∈ {0, 1}ℓ.

1. c← m⊕ k

Output: c

Algorithm 1.3: Dec (One Time Pad)
Input: Key k ∈ {0, 1}ℓ, Ciphertext c ∈ {0, 1}ℓ.

1. m← c⊕ k

Output: m

Theorem 1.1 (One Time Pad Security)

The One Time Pad cipher defined in Algorithms 1.1, 1.2 and 1.3 is correct and perfectly
secure.

Proof (Theorem 1.1). Let k,m be in {0, 1}ℓ. By involution, it holds that (m⊕k)⊕k = m and
therefore Dec(k,Enc(k,m)) = m. Now, let K,M be independent random variables following
U({0, 1}ℓ) and some distribution P respectively, and C = Enc(K,M). Let m, c be in {0, 1}ℓ.

! Go to Contents 7

1. DEFINITION OF SECURITY

It holds that

P[M ⊕K = c|M = m] = P[m⊕K = c]

= P[K = m⊕ c]
= 2−ℓ.

Now, we can compute P[M = m|C = c] as follows.

P[M = m|C = c] =
P[M = m ∧M ⊕K = c]

P[M ⊕K = c]

=
P[M = m ∧K = c⊕m]∑

m∈Supp(P) P[M ⊕K = c|M = m]

=
P[M = m]P[K = c⊕m]

2−ℓ

= P[M = m].

As a result, the One Time Pad is correct and perfectly secure as claimed.

Since we have a simple encryption scheme that is perfectly secure, it is natural to ask why
cryptography is still an active field of research. The first thing is that in the One Time Pad,
the key must be the same length as the message. Thence, when encrypting a large amount of
data, one must use very large keys which is highly impractical. Additionally, each key can only
be used once. Otherwise, when a pair (m, c) is known, one can find the key k. Additionally, if
two messages m1,m2 are encrypted with the same key k, one can learn m1 ⊕m2 = c1 ⊕ c2 which
leaks information about m1 and m2, thus violating perfect security. This is due to the fact that
the One Time Pad is not perfectly secure if one considers the joint probability of two ciphertext
of independent messages but with the same key.

Additionally, the One Time Pad offers a solution only for the confidentiality of data, but many
other problems remain. The first is how to have two distant users agree on the same key k,
especially if this key can only be used once. The other natural question is how to guarantee that
the message originates from the correct sender. And how to guarantee that the message has not
been tampered with? For example, if an adversary intercepts c = m⊕ k and forwards c⊕ 1, then
the decryption will be m⊕ 1. Hence, without learning anything on m nor k, an adversary is able
to flip bits in the decrypted message. As a result, the integrity of the transmitted message is not
guaranteed.

These problems are dealt with other cryptographic algorithms and protocols, which are essential
to satisfy all the security properties we expect.

1.1.2 Shannon’s Theorem
To go further, Shannon derived a sufficient and necessary condition to have perfectly secure ciphers.
For that, we first need the following lemma.

Lemma 1.1

Let (KeyGen,Enc,Dec) be a cipher with key space K, message spaceM and ciphertext space
C. We call C′ the set of reachable ciphertext, i.e., C′ = Enc(K,M). If the cipher is correct
and perfectly secure, then it holds that |K| ≥

∣∣C′∣∣ ≥|M|.
Proof (Lemma 1.1). Since the cipher is correct, the encryption function is necessarily injective.
Otherwise, either it yields a contradiction on the correctness or the decryption function is ill-
defined. Hence

∣∣C′∣∣ ≥|M|.
Then, let m be in M. By perfect security, it holds that for all c ∈ C′ we have

P[C = c|M = m] =
P[C = c ∧M = m]

P[M = m]
=

P[C = c]P[M = m|C = c]

P[M = m]
= P[C = c] > 0

It means that for all reachable ciphertext c, there exists a key k ∈ K such that Enc(k,m) = c.
Hence |K| ≥

∣∣C′∣∣.
8 Go to Contents !

1.2. DEFINING SECURITY

Theorem 1.2 (Shannon’s Theorem)

Let (KeyGen,Enc,Dec) be a cipher with key space K, message spaceM and ciphertext space
C such that |K| = |M| = |C|. The cipher is pefectly secure if and only if (1) the output
distribution of KeyGen is U(K), and (2) for each (m, c) ∈M×C, there exists a unique k ∈ K
such that c = Enc(k,m).

1.2 Defining Security
In the previous section, we defined one specific notion of security for symmetric ciphers called
perfect security. But as Shannon’s theorem shows (Theorem 1.2), it is quite an impractical security
notion. We now dive into other forms of security. For that, we first present a few mathematical
tools and notations that are going to be helpful.

1.2.1 Perfect Security versus Computational Security
We showed that the One Time Pad mathematically verifies our notion of perfect security. This
implies that even an all-powerful adversary with unlimited computing power will not be able to
attacks the cipher. The security is due to the fact that the adversary does not have enough
information to attack the primitive. We have also seen why it is not usable in practice. We thus
need to find new security notions. In modern cryptography, the schemes can be attacked but in
an unreasonable amount of time (say the age of the universe). This level of security is enough
for practical security. We call it computational security. Note that computational security is
weaker than perfect security.

What this means in practice os that we consider efficient adversaries which are limited to
running algorithms that terminate in a reasonable amount of time, and we accept that an adversary
can succeed in attacking with a very low probability.

Example 1.1 (Time Scales)

We usually measure time with CPU cycles. A computer running at 3.4 GHz performs 3.4·109
cycles per second. Imagining 260 cycles, it would take this computer around 260/(3.4 ·109) ≈
3.4 · 108 seconds which is around 11 years. By parallelizing, it may be dropped down to less
than a year. For reference, 258 is the estimate of the number of seconds since the big bang.
Regarding success probabilities, an event that occurs with probability 2−60 every second
should thus occur on average once every 100 billion years.

Asymptotic Approach.

The computation time and success probability of an adversary are usually defined as functions
of a security parameter λ. The asymptotic approach thus categorizes the scales as asymptotic
behaviors. For that, let us recall the usual Landau notations.

Definition 1.3 (Landau Notations)

Let f, g be two functions from N to R×.

• f = O(g)⇐⇒ ∃K ∈ R,∃λ0, ∀λ ≥ λ0, f(λ) ≤ Kg(λ).

• f = o(g)⇐⇒ lim
λ→+∞

f(λ)/g(λ) = 0.

• f = Ω(g)⇐⇒ g = O(f).

• f = ω(g)⇐⇒ g = o(f).

• f = Θ(g)⇐⇒ f = O(g) ∧ g = O(f).

In the asymptotic approach, we say that algorithms run in time polynomial in λ if there exists
a constant c such that the algorithm’s running time is O(λc). For success probabilities, we say
they are negligible in λ if for all constants c, the success probability is o(λ−c). Throughout this
course negl is usually a negligible function, i.e., negl(λ) = λ−ω(1). Adding two negligible functions

! Go to Contents 9

1. DEFINITION OF SECURITY

stays negligible, and multiplying a negligible function with a polynomial one stays negligible as
well. Examples of negligible functions are 2−λ, 2−

√
λ or λ− log λ.

Concrete Approach.

The asymptotic approach is interesting to understand coarse grain behavior and have a quick idea
of the expected behavior. However, it usually hides several elements. Asymptotic notations are
relative to constants, and additionally, the polynomial categorization does not say anything about
the degree of the polynomial. For example λ1000 grows much faster than λ2, but they are both
polynomial functions of λ. In concrete instantiation of cryptographic schemes, the asymptotic
approach may be insufficient to obtain a fine-grained behavior.

To have more detailed analyses, we usually define a security standard with the security param-
eter λ that takes a concrete value. For example, one can choose λ = 128, in which case we talk
about 128 bits of security. This means that the best attacks should run in time at least 2λ = 2128

operations. One could also define other cost models which are relevant for adversaries. The ones
that are usually considered are memory (amount of storage needed to run an algorithm success-
fully) and time. Typical security parameters considered in cryptography are therefore λ = 128,
λ = 256, λ = 512. They are very conservative in the sense that the former is already more than
enough to guarantee that an attacker would need a highly unreasonable amount of ressource (time
or memory) to break the security of the scheme. Certain more recent algorithms are categorized
as lightweight and use λ = 80. In our case, we will take λ ≥ 128.

Computational Security.

Depending on the desired metrics (time, memory, electric consumption, etc.), we can define what
we mean by computational security.

Definition 1.4 (Computational Security)

A cryptographic primitive is called (t,m, ε)-secure the probability of an adversary of success-
fully attacking the primitive in time at most t, with at most m units of memory, is at most
ε.

1.2.2 Indistinguishability
We usually consider probability distributions when talking about security. For example, if the
ciphertexts are distributed uniformly in the ciphertext space, it means they look random to an
adversary and thus do not leak information about the underlying message. But if they are not
exactly uniform but close to it, it may give us security guarantees as well. For that, we need to
define notions of closeness more formally.

Statistical Indistinguishability.

There are several ways of measuring how close two probability distributions are. A very usual tool
in cryptography is called the statistical distance, which we define here.

Definition 1.5 (Statistical Distance)

Let S be a countable set, and X and Y be two discrete random variables taking values in S.
The statistical distance between X and Y (or the distributions they represent) is defined by

∆(X,Y) =
1

2

∑
s∈S

∣∣P[X = s]− P[Y = s]
∣∣ .

If X and Y are continuous random variables over a set S and with respective probability
density functions fX and fY , the statistical distance between X and Y is defined as

∆(X,Y) =
1

2

∫
s∈S

∣∣fX(s)− fY (s)
∣∣ ds.

The statistical distance verifies the usual properties of a distance as reminded in the following
lemma.

10 Go to Contents !

1.2. DEFINING SECURITY

Lemma 1.2

LetX, Y , Z be three random variables taking values in a set S. It holds that (1) ∆(X,Y) ≥ 0,
(2) ∆(X,Y) = 0 ⇔ X and Y are identically distributed, (3) ∆(X,Y) = ∆(Y,X) and (4)
∆(X,Z) ≤ ∆(X,Y) + ∆(Y,Z).

Proof (Lemma 1.2). Let X, Y , Z be three random variables taking values in a set S. It
trivially follows that ∆(X,Y) = 1

2

∑
s∈S
∣∣P[X = s]− P[Y = s]

∣∣ ≥ 0, thus yielding (1).
For (2), first assume that ∆(X,Y) = 0. Since it is a sum of positive reals, it holds that

for all s ∈ S, P[X = s] = P[Y = s]. Reciprocally, assume that X and Y are identically
distributed. Then each term of the sum is 0 and therefore ∆(X,Y) = 0.

For (3), it directly holds that

∆(X,Y) =
1

2

∑
s∈S

∣∣P[X = s]− P[Y = s]
∣∣ = 1

2

∑
s∈S

∣∣P[Y = s]− P[X = s]
∣∣ = ∆(Y,X).

Finally, we have

∆(X,Z) =
1

2

∑
s∈S

∣∣P[X = s]− P[Z = s]
∣∣

=
1

2

∑
s∈S

∣∣P[X = s]− P[Y = s] + P[Y = s]− P[Z = s]
∣∣

≤ 1

2

∑
s∈S

∣∣P[X = s]− P[Y = s]
∣∣+∣∣P[Y = s]− P[Z = s]

∣∣
= ∆(X,Y) + ∆(Y,Z),

as claimed in (4).

We also have the following properties which are extremely important when comparing distri-
butions. The following will possibly be proven in the exercise sessions.

Lemma 1.3

Let X,Y be two discrete random variables over a countable set S, and Z a discrete random
variable over a countable set S′ (possibly different from S). If Z is independent of X and Y ,
then ∆((X,Z), (Y,Z)) = ∆(X,Y).
For any positive integer k and tuples of random variables (Xi)1≤i≤k, (Yi)1≤i≤k over a tuple
(Si)1≤i≤k of countable sets, if all the Xi and Yi are independent, then

∆((Xi)1≤i≤k, (Yi)1≤i≤k) ≤
k∑

i=1

∆(Xi, Yi).

Finally, for two random variables X,Y over a countable set S, and for any (possibly random-
ized) function f : S → S′ with S′ a countable set, it holds that ∆(f(X), f(Y)) ≤ ∆(X,Y).

The statistical distance also benefits from a probability preservation property which is essential
when using the statistical distance in reductions or security proof.

Lemma 1.4 (Probability Preservation)

Let P and Q be two discrete probability distributions over a countable set S, and E ⊆ S be
an arbitrary event. Then it holds that

P (E) ≤ ∆(P,Q) +Q(E).

We can now define the notion of statistical indistinguishability.

! Go to Contents 11

1. DEFINITION OF SECURITY

Definition 1.6 (Statistical Indistinguishability)

Let I be a (possibly infinite) set of indices. Let (Xi)i∈I and (Yi)i∈I be two families of discrete
random variables over a family (Si)i∈I of countable sets. We say that (Xi)i∈I and (Yi)i∈I are
statistically indistinguishable if there exists a negligible function negl, and an index i0 ∈ I
such that for all i ≥ i0, ∆(Xi, Yi) ≤ negl(i).

This definition follows the asymptotic approach. In a concrete approach, we generally say that
two distributions P,Q are statistically indisguishable if ∆(P,Q) ≤ 2−λ where λ is the concrete
security parameter. The function 2−λ can be replaced by any concretely negligible function of λ.

Computational Indistinguishability.

We can also define a notion of computational indistinguishability. Informally, two probability
distributions are computationally indistinguishable if no efficient algorithm can distinguish between
them.

Definition 1.7 (Computational Indistinguishability)

Let I be a (possibly infinite) set of indices. Let (Xi)i∈I and (Yi)i∈I be two families of discrete
random variables over a family (Si)i∈I of countable sets. We say that (Xi)i∈I and (Yi)i∈I
are computationally indistinguishable if for all polynomial time distinguisher D, there exists
a negligible function negl, and an index i0 ∈ I such that for all i ≥ i0,∣∣∣P[D(1i, Xi) = 1]− P[D(1i, Yi) = 1]

∣∣∣ ≤ negl(i)

Notice that the distinguisher is given i in unary encoding so that it knows it is allowed to run
in time at most polynomial in i.

Rényi Divergence.

There are several other ways of measuring the closeness of two probability distributions. One
measure that has been more and more frequently used in cryptography is called the Rényi diver-
gence [R6́1, vEH14]. The Rényi divergence has been thoroughly studied for its use in cryptography
as powerful alternative for the statistical distance.

Definition 1.8 (Rényi Divergence)

Let P and Q be two discrete probability distributions over a countable set S such that
Supp(P) ⊆ Supp(Q). Let α be a real such that α > 1. The Rényi Divergence of order α is
defined as

RDα(P∥Q) =

 ∑
x∈Supp(P)

P (x)α

Q(x)α−1

 1
α−1

.

The Rényi divergence also benefits from some interesting properties such as probability preser-
vation, multiplicativity and data processing, which we summarize in the following lemmata.

Lemma 1.5 (Probability Preservation)

Let P and Q be two discrete probability distributions over a countable set S such that
Supp(P) ⊆ Supp(Q). Let α be a real such that α > 1, and E ⊆ Supp(Q) be an arbitrary
event. Then it holds that

P (E)
α

α−1 ≤ RDα(P∥Q) ·Q(E).

Lemma 1.6 (Rényi Divergence Properties)

Let X and Y be two discrete random variables over a countable set S such that Supp(X) ⊆
Supp(Y), and f : S −→ S′ a (possibly randomized) function with S′ a countable set. Let α

12 Go to Contents !

1.3. SECURITY MODELS

be a real such that α > 1. It then holds that

RDα(f(X)∥f(Y)) ≤ RDα(X∥Y).

Then, for (Pi)i∈J1,nK, (Qi)i∈J1,nK two families of independent discrete probability distributions
over a family of countable sets (Si)i∈J1,nK and such that Supp(Pi) ⊆ Supp(Qi) for all i in
J1, nK, it holds that

RDα(⊗i∈J1,nKPi∥ ⊗i∈J1,nK Qi) =
∏

i∈J1,nK

RDα(Pi∥Qi),

where ⊗i∈J1,nKPi denotes the joint probability distribution of the family (Pi)i∈J1,nK and sim-
ilarly for (Qi)i∈J1,nK.

1.3 Security Models
Lattice-based cryptography is part of public-key cryptography. As such, we will focus on defining
security models for public-key primitives. Security models are defined to capture real-life scenarios
and to theoretically model the behavior of real-life attackers. If a security model is meaningless
with respect to real-life situations, it should not be considered and overhauled. New cryptographic
primitives arise as cryptography is a dynamic research area. As a result, new security models based
on the use of such primitives are proposed. It is therefore hard to be exhaustive when it comes
to all the possible security models. In this course, we focus on basic primitives such as public-key
encryption and digital signatures.

A security model is the combination of (1) an attacker model, (2) an attack setting, and (3)
an objective. The attacker model (1) defines the adversary’s capabilities and resources in terms
of computation time, computational power, memory availability, energy consumption, etc. The
attack setting (2) establishes what the adversary has access to, e.g., only the public key, or the
public key and intercepted ciphertexts, etc. Finally, the objective (3) fixes the goal of the adversary,
e.g., recover the secret key, forge a signature, learn some information from the ciphertext, etc. In
general, we only focus on (2) and (3) as we consider probabilistic polynomial-time (PPT) adversaries
that can be modeled as Turing machines. By polynomial-time, we mean that the adversary has
limited amount of time to perform the attack which is polynomial in the security parameter λ. We
note that the attacker model has to be changed when evaluating quantum security. Indeed, the
attacker may have access to quantum queries, quantum random access memory, and so on. We do
not consider these quantum models in this course.

1.3.1 Public-Key Encryption

As introduced in the seminal paper of Diffie and Hellman [DH76], public-key cryptography is a
fruitful area of cryptography. As opposed to symmetric cryptography, the users do not need to
agree upon a shared secret key to communicate. Instead, they each possess a key-pair composed
of public key pk, that they publish on a public-key infrastructure that everybody can access,
and an associated secret key sk that they keep to themselves only. Both keys are usually linked
mathematically, and recovering the secret key from the public key alone usually involves solving
a hard mathematical problem. The first realization of public-key cryptography is the famous
RSA [RSA78] encryption algorithm which relies on the factorization problem.

Definition 1.9 (Public-Key Encryption)

A public-key encryption (PKE) scheme is defined by three algorithms KeyGen, Enc and Dec
which are described as follows.

• KeyGen: Takes a security parameter λ and outputs a public key pk and the associated
secret key sk.

• Enc: Takes a public key pk, a plaintext m and outputs a ciphertext c = Enc(pk,m).

• Dec: Takes a secret key sk, a ciphertext c and outputs a plaintext m = Dec(sk, c).

! Go to Contents 13

1. DEFINITION OF SECURITY

The encryption scheme must be correct, i.e., verifying

∀(pk, sk)← KeyGen(1λ),∀m,Dec(sk,Enc(pk,m)) = m

There are several possible security models for public-key encryption schemes. They usually
are the association of a goal and attacker model, e.g., OW-CPA, IND-CPA, IND-CCA1. In this
course, we focus on the security models that imply most (if not all) others. The easiest goal for an
attacker is to know part or a function of the encrypted plaintext. The notion that formalizes this
idea is the indistinguishability of ciphertexts or semantic security, as coined by Goldwasser and
Micali in 1982 [GM82]. It captures the idea that an attacker that knows two messages and who is
given the encryption of one of them cannot determine which message was encrypted.

IND-CPA Security.

We now need to combine this goal with an attack model. The first one we consider is that of
chosen plaintext attacks (CPA). Knowing the public key allows the attacker to select plaintexts
and encrypt them themselves, but not decrypting them.

Definition 1.10 (IND-CPA Security)

Let KeyGen, Enc and Dec define a public-key encryption scheme. We define the following
experiment.

Challenger C Adversary A

(pk, sk)← KeyGen(1λ)
pk

Choose m0 ̸= m1

m0,m1

b←↩ U({0, 1})
c← Enc(pk,mb)

c

Choose b′ ∈ {0, 1}
b′

A wins if b′ = b

The advantage of the adversary A in the above game is defined as

AdvIND−CPA[A] =
∣∣∣∣P[b′ = b]− 1

2

∣∣∣∣ .
We say that the public-key encryption scheme is (t, ε)-IND-CPA secure if for all probabilistic
adversary A running in time at most t, it holds that AdvIND−CPA[A] ≤ ε.

The advantage captures the fact that A can always make a random guess on which message
has been encrypted. Then the probability of winning is 1/2 which gives them an advantage of 0.
The CPA attack models the fact that the attacker can know (plaintext,ciphertext) pairs which is
usually true as they have access to the public key. Additionally, we see that the encryption scheme
must be randomized to have a chance of meeting the IND-CPA security requirement. Indeed,
assume the function Enc is deterministic. In the game, the adversary can compute Enc(pk,m0)
and Enc(pk,m1) on their own and compare the result to c to determine the value of b. Randomizing
Enc thwarts this attack as each computation of Enc(pk,mb) results in different ciphertexts. Finally,
this notion implies that a single key pair can be used several times, which was the primary obstacle
of the One Time Pad.

IND-CCA Security.

We can define a stronger security model that allows more freedom to the adversary than in the
CPA attack model. We can allow the attacker to make decryption queries before (CCA1) and
after (CCA2) having received the challenge ciphertext c (as long as the ciphertexts sent to the
decryption queries are different from c). In that context, we talk about chosen ciphertext attacks
(CCA).

14 Go to Contents !

1.3. SECURITY MODELS

Definition 1.11 (IND-CCA1 Security)

Let KeyGen, Enc and Dec define a public-key encryption scheme. We define the following
experiment.

Challenger C Adversary A

(pk, sk)← KeyGen(1λ)
pk

c(i)

Choose c(i)m(i) ← Dec(sk, c(i)) m(i)

Choose m∗0 ̸= m∗1m∗0,m
∗
1

b←↩ U({0, 1})
c∗ ← Enc(pk,m∗b) c∗

Choose b′ ∈ {0, 1}b′

A wins if b′ = b

Decryption
Queries

The advantage of the adversary A in the above game is defined as

AdvIND−CCA1[A] =
∣∣∣∣P[b′ = b]− 1

2

∣∣∣∣ .
We say that the public-key encryption scheme is (t, ε)-IND-CCA1 secure if for all probabilistic
adversary A running in time at most t, it holds that AdvIND−CCA1[A] ≤ ε.

Definition 1.12 (IND-CCA2 Security)

Let KeyGen, Enc and Dec define a public-key encryption scheme. We define the following
experiment.

Challenger C Adversary A

(pk, sk)← KeyGen(1λ)
pk

c(i)

Choose c(i)m(i) ← Dec(sk, c(i)) m(i)

Choose µ∗0 ̸= µ∗1µ∗0, µ
∗
1

b←↩ U({0, 1})
c∗ ← Enc(pk, µ∗b) c∗

c(i)

Choose c(i) ̸= c∗m(i) ← Dec(sk, c(i)) m(i)

Choose b′ ∈ {0, 1}b′

A wins if b′ = b

Decryption
Queries

Decryption
Queries

The advantage of the adversary A in the above game is defined as

AdvIND−CCA2[A] =
∣∣∣∣P[b′ = b]− 1

2

∣∣∣∣ .
We say that the public-key encryption scheme is (t, ε)-IND-CCA2 secure if for all probabilistic
adversary A running in time at most t, it holds that AdvIND−CCA2[A] ≤ ε..

! Go to Contents 15

1. DEFINITION OF SECURITY

1.3.2 Digital Signature
Although public-key encryption schemes ensure the confidentiality of messages, it does not guar-
antee the integrity or authenticity of data. This means the receiver has no guarantee that the
ciphertext it received originated from the correct sender, nor does they know whether or not it
was tampered with. For this very purpose, another type of primitive called digital signature was
introduced, and which can be traced back to the seminal work of Diffie and Hellman [DH76]. They
act as a certificate that the signed data is authentic, and they represent a digital version of hand-
written signatures. Informally, a signature is produced on a message using the secret key so that
only the owner of said key can certify data, and the signature can be verified using the message
and the public key, making it verifiable by everybody.

Definition 1.13 (Digital Signature)

A digital signature scheme is defined by three algorithms KeyGen, Sign and Verify which are
described as follows.

• KeyGen: Takes a security parameter λ and outputs a public key pk and the associated
secret key sk.

• Sign: Takes a secret key sk, a message m and outputs a signature sig = Sign(sk,m).

• Verify: Takes a public key pk, a message m and a signature sig on said message, and
outputs a bit b = Verify(pk,m, sig) which is 1 if the signature is valid, and 0 otherwise.

The signature scheme must be correct, i.e., verifying

∀(pk, sk)← KeyGen(1λ),∀m,Verify(pk,m,Sign(sk,m)) = 1.

EUF-CMA Security.

The most widely used security model for digital signature schemes is the existential unforgeability
against chosen message attacks (EUF-CMA). The security objective (EUF) is to produce a valid
signature on a message of its choice, without having seen prior signature on said message. The
attack context allows the adversary to query signatures on messages of its choice (CMA). This
model then captures the idea that an adversary that only knows the public key is incapable of
producing valid signatures on any message, even one of its choosing. It thus guarantees that
nobody is able to usurp the identity of a signer and certify data in their name. The security model
is formally defined in a three stage game.

Definition 1.14 (EUF-CMA Security)

Let KeyGen, Sign and Verify define a digital signature scheme. We define the following
experiment.

Challenger C Adversary A

(pk, sk)← KeyGen(1λ)
pk

mi

Choose misigi ← Sign(sk,mi) sigi

Choose m∗, sig∗m∗, sig∗

A wins if m∗ ̸= mi,∀i
and Verify(pk,m∗, sig∗) = 1

Signature
Queries

The advantage of the adversary A in the above game is defined as

AdvEUF−CMA[A] = P[Verify(pk,m∗, sig∗) = 1 ∧ ∀i,m∗ ̸= mi].

We say that the public-key encryption scheme is (t, ε)-EUF-CMA secure if for all probabilistic
adversary A running in time at most t, it holds that AdvEUF−CMA[A] ≤ ε.

16 Go to Contents !

1.3. SECURITY MODELS

We can define a stronger version of this model, providing further security guarantees. We then
talk about strong EUF-CMA, also denoted sEUF-CMA. The only difference lies in the winning
condition. We require that the forged signature is a valid signature on m∗, but we allow m∗ to be
one the messagesmi used in the signing queries as long as sig∗ ̸= sigi. Said differently, the adversary
is allowed to query a signature on m∗, but must produce a new one in the end. We summarize this
condition saying that A wins the sEUF-CMA if Verify(pk,m∗, sig∗) = 1 and (m∗, sig∗) ̸= (mi, sigi)
for all the queries i (which implies that either m∗ has never been queried as in the EUF-CMA game,
or that it has been queried but the forged signature differs from that obtained in said query). The
security sEUF-CMA is, as its name suggests, stronger than EUF-CMA security. More precisely,
sEUF-CMA implies EUF-CMA.

1.3.3 Hash Functions
Along the same lines as commitment scheme, another family of tools omnipresent in cryptography
is the hash functions. They are essential in many signature designs that we will see later on,
especially when they are modeled as random oracles. The idea of a hash function is to compress an
arbitrarily long string into a digest of fixed size. When we consider cryptographic hash functions,
we also expect it to satisfy security requirements in addition to this compression feature. Typically,
we want it to be one-way, meaning that given a digest, an adversary cannot find the input string
used to compute it (uninvertibility), or any other input string that gives the given digest (second
preimage resistance). We also usually expect it to be collision-resistant, i.e., it should be infeasible
to find two different input strings that give the same digest. The most common application is the
use of hash functions for password databases. Storing clear passwords in a database is prone to
leakage by attacking the database. Instead, the database only contains the digest of the passwords.
Since the function is one way, one cannot recover the underlying passwords. To authenticate, the
server would compute the digest of the given password and compare it to the database.

Definition 1.15 (Hash Function)

A hash function is defined by two algorithms KeyGen, H, which are described as follows.

• KeyGen: Takes a security parameter λ and outputs a key k.

• H: There exists two polynomial functions ℓ, ℓ′ with ℓ′(λ) > ℓ(λ), such that given a key
k and an input string x ∈ {0, 1}ℓ′(λ), the algorithm outputs H(k, x) ∈ {0, 1}ℓ(λ).

In this case, the input string has a fixed length. For arbitrarily long strings, we can replace
{0, 1}ℓ′(λ) by {0, 1}∗.

The key k is usually public for universal hash functions and is part of the specification of the
function. For example, for the SHA functions, the key can be thought as the constants used in the
hash algorithm. In what follows, we will omit the key and simply refer to the hash function as H,
and to the digest of a string x as H(x).

Security Properties of Hash Functions

We now define the three security properties informally described above.

Definition 1.16 (Uninvertibility)

Let H be a hash function. We consider a distribution X over the input domain (usually
uniform). The hash function H is said to be (t, ε)-uninvertible with respect to X if for all
adversary A running in time at most t, it holds that

Px∼X [A(H,H(x)) = x] ≤ ε.

Definition 1.17 (Second Preimage Resistance)

Let H be a hash function. We consider a distribution X over the input domain (usually
uniform). The hash function H is said to be (t, ε)-second preimage resistant with respect to

! Go to Contents 17

1. DEFINITION OF SECURITY

X if for all adversary A running in time at most t, it holds that

Px∼X [A(H,H(x)) ̸= x ∧H(A(H,H(x))) = H(x)] ≤ ε.

The second preimage resistance does not necessarily assumes a distribution on x, in which case
the probability only runs over the random coins of A. Typically, we sometimes state it as follows:
given x and H, the adversary must find x′ ̸= x such that H(x′) = H(x).

Definition 1.18 (One-Wayness)

Let H be a hash function. We consider a distribution X over the input domain (usually
uniform). The hash function H is said to be (t, ε)-one-way with respect to X if for all
adversary A running in time at most t, it holds that

Px∼X [H(A(H,H(x))) = H(x)] ≤ ε.

Definition 1.19 (Collision Resistance)

Let H be a hash function. The hash function H is said to be (t, ε)-collision resistant if for
all adversary A running in time at most t, it holds that

P(x,x′)←A(H)[x ̸= x′ ∧H(x) = H(x′)] ≤ ε.

These security properties are layered as we can show that certain properties or combination of
them imply others. We summarize these claims in the following lemmas. These notions and results
can be generalized for function families that are not necessarily hash functions, see e.g., [MP13].

Lemma 1.7 (Sufficient Condition of One-wayness)

Let H be a hash function, and X a distribution over the input domain. If H is (t, ε)-
uninvertible with respect to X and (t + t′, ε′)-second preimage resistant with respect to X ,
then it is (t, ε+ ε′)-one-way, where t′ is the computation time of H.

Proof (Lemma 1.7). Let A be an algorithm running in time at most t and attacking the
one-wayness of H. Let x ←↩ X be a random inputand compute y = A(H,H(x)). We now
bound the probability that H(x) = H(y). If y = x, then A breaks the uninvertibility property,
while if y ̸= x, then it breaks the second preimage resistance. Hence, we have

Px[H(x) = H(y)] = Px[x = y ∧H(x) = H(y)] + Px[x ̸= y ∧H(x) = H(y)]
= Px[x = A(H,H(x))] + Px[x ̸= A(H,H(x)) ∧H(x) = H(A(H,H(x)))]
≤ ε+ ε′,

as desired. For the second preimage resistance, one needs to verify thatH(x) = H(A(H,H(x)))
which requires the computation of an extra hash digest, explaining the t′.

Lemma 1.8 (Sufficient Condition Second Preimage Resistance)

Let H be a hash function. If H is (t+t′, ε)-collision resistant, then it is (t, ε)-second preimage
resistant, where t′ is the computation time of H.

Proof (Lemma 1.8). Let A be an algorithm running in time at most t and attacking the
second preimage resistance of H for arbitrary inputs. We construct an adversary B against
the collision resistance as follows. B chooses x in the domain and computes y = A(H,H(x)).
Then x ̸= y and H(x) = H(y). It holds that B runs in time at most t+ t′ as A runs in time

18 Go to Contents !

1.4. PROVABLE SECURITY

at most t. As a result

ε ≥ P(x,y)←B(H)[x ̸= y ∧H(x) = H(x′)] ≥ PA[A(H,H(x)) ̸= x ∧H(A(H,H(x))) = H(x)],

as desired.

Pseudorandomness and Random Oracle Model

Finally, it is sometimes expected that cryptographic hash functions produce close to random out-
puts. This property is typically used to argue the validity of the random oracle model of a hash
functions. We describe here the pseudorandomness property of a hash function and its link to the
random oracle model.

Definition 1.20 (Pseudorandomness)

Let H be a hash function with output space Y . We consider a distribution X over the
input domain (usually uniform). The hash function H is said to be (t, ε)-pseudorandom with
respect to X if for all distinguisher A running in time at most t, it holds that∣∣∣Px∼X [A(H,H(x)) = 1]− Py∼U(Y)[A(H, y) = 1]

∣∣∣ ≤ ε.
A random oracle is an oracle that replies to every unique query by a uniformly random samples.

The random oracle should respond the same way on the same query.

Definition 1.21 (Random Oracle)

Let Y be an output space, and IOR an input-output register empty at the outset. We say
that RO is a random oracle with output space Y and input-output register IOR if it behaves
as follows. Given an input x

• if (x, y) ∈ IOR for some y ∈ Y , then RO(x) outputs y.

• else sample y ←↩ U(Y), update IOR← IOR ∪ {(x, y)}, and RO(x) outputs y.

The random oracle model then states that every cryptographic hash function behaves as a
random oracle. This essentially comes down to H being pseudorandom with consistent input-
output pairs.

1.4 Provable Security
As we departed from the One Time Pad and Shannon’s perfect security, a natural question is
whether there is a chance to have proven security for cryptographic schemes. The answer is
positive but with a caveat. The security models we introduced in Section 1.3 give a framework for
the security proof of cryptographic primitives. However, although they model a real-life security
requirement in a fairly simple and formal way, it may be complex to fully prove these security
properties. In public-key cryptography, we instead reduce these security properties to a small
set of mathematical assumptions. Said differently, we assume that a few simpler properties are
verified, and prove that if they are indeed, they then imply the desired security property. These
assumptions are generally linked to mathematical problems which are supposed to be difficult to
solve (like the factorization problem).

1.4.1 Security Proofs
As another course is dedicated to security proofs, we will not enter the details and only recall a
little vocabulary.

The purpose of security models is essentially to model real-life attack scenarios as mathematical
problems. Once we have defined a proper security model for a given cryptographic construction,
proving its security comes down to proving that the problem defined by the security model is a hard
problem. To prove it hard, we can adopt either of the approaches from Section 1.2.1. In public-
key cryptography, we mostly use the asymptotic or concrete approaches while making additional

! Go to Contents 19

1. DEFINITION OF SECURITY

mathematical assumptions that need to be reasonable. For example, the problem of factoring
a number into a product of two large primes, i.e., the factorization problem is the assumption
underlying the RSA [RSA78] cryptosystem. There are several viable ways of proving the hardness
of the security problems. We cover the two main ones here, which we use later in this course.

Reduction.

A reduction is a way of establishing a hierarchy between the difficulty of mathematical problems.
The goal is to prove that if a problem P1 is hard to solve (for a notion of hardness which can be
proven or assumed, and asymptotically or concretely), then the problem P2 is also hard to solve.
To do so, a reduction usually focuses on the contraposition of this statement and shows that if P2

is easy, then so is P1.

Definition 1.22 (Reduction)

Let P1, P2 denote two mathematical problems. We say that there is a reduction from P1 to
P2 if there exists an algorithm which solves P1 given a solver for P2. In that case, we also
say that P2 is at least as hard as P1.

Note that in this definition, there is no constraint on the reduction algorithm. However, in most
cases we place limitations on this algorithm. Typically, we expect the reduction to be efficient,
e.g., polynomial-time, and sometimes deterministic. In the literature, reductions are usually called
transformation reductions. This means that the reduction algorithm takes an instance of P1 and
transforms it into an instance of P2 which can be solved by the oracle. It has no impact in this
course, but we decide to call reduction even those which would not be categorized as transformation
reductions.

Game Hop.

Another method of proving the security of a cryptographic scheme is to use game hops methods.
As can be seen in Sections 1.3.1 and 1.3.2, the security problems are formulated as games between a
challenger and an adversary. The idea of a game hop is to slightly change the security game, while
proving that the advantage of the adversary in this modified game is not significantly different
from that in the original game. Let us take the exemple of the IND-CPA game for an public-key
encryption scheme, which we note G0. Assume we are able to define a similar game G1 such
that

∣∣AdvG1
[A]−AdvG0

[A]
∣∣ ≤ ε for all adversary A, and that in G1, the challenge ciphertext c

is independent of the random bit b. The latter property implies that AdvG1
[A] = 0. Combined

with the prior inequality between G0 and G1, it proves AdvG0
[A] ≤ ε. To show this kind of

inequality, we look at the probability distribution of the view of the adversary. The view of
the adversary corresponds to all the elements the adversary has access to that depend on the
challenger. In our example, View(A) = (pk, c). We would thus prove the distribution of (pk, c) in
G1 is ε-indistinguishable from that of (pk, c) in G0.

Remark 1.1

It is obviously possible to combine several games. For example, if we define G0, . . . , GN such
that

∣∣AdvGi+1
[A]−AdvGi

[A]
∣∣ ≤ εi and that we are able to bound AdvGN

[A] ≤ ε, this proves
AdvG0

[A] ≤ ε +
∑N−1

i=0 εi by the triangle inequality. If all the ε, εi are negligible, it then
shows AdvJ0

[A] is negligible.
It is also possible to combine game hops with reductions. For example, we could show the
games G0, . . . , GN verify

∣∣AdvGi+1 [A]−AdvGi [A]
∣∣ ≤ εi by game hops. Then, to bound

AdvGN
[A] ≤ ε, we could show that the mathematical problem corresponding to GN is at

least as hard as a problem P . Then, the bound ε would be linked to the difficulty of
solving P . Each game hop could also be argued using a reduction. For example, to show∣∣∣AdvGi0+1

[A]−AdvGi0
[A]
∣∣∣ ≤ εi0 , one could argue that distinguishing the view of A in Gi0

from the view of A in Gi0+1 is at least as hard than a decisional problem P ′. Then, εi would
be linked to the difficulty of solving P ′.

20 Go to Contents !

BIBLIOGRAPHY

Bibliography
[DH76] W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Trans. Inf. Theory,

1976.

[GM82] S. Goldwasser and S. Micali. Probabilistic Encryption and How to Play Mental Poker
Keeping Secret All Partial Information. In STOC, 1982.

[MP13] D. Micciancio and C. Peikert. Hardness of SIS and LWE with Small Parameters. In
CRYPTO, 2013.

[R6́1] A. Rényi. On Measures of Entropy and Information. In Proc. 4th Berkeley Sympos. Math.
Statist. and Prob., Vol. I, 1961.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Commun. ACM, 1978.

[vEH14] T. van Erven and P. Harremoës. Rényi Divergence and Kullback-Leibler Divergence.
IEEE Trans. Inf. Theory, 2014.

! Go to Contents 21

Part II

Lattice Theory

]

This part focuses on the fundamentals of lattices and lattice problems.

2

Lattices

Lattices are mathematical objects that have been used for centuries in various area of mathematics
and applied sciences. They are often referred to as Euclidean lattices but can only be traced back
to Lagrange (1736 - 1813). Their properties and rich geometry offer very interesting applications
in mechanics, physics, biology and many more. The algorithmic theory surrounding lattices that
is now the base of lattice-based cryptography has emerged in the late 1900s with the work of
Lenstra, Lenstra and Lovàsz [LJL82]. In this chapter, we present the mathematical definitions
and properties of lattices needed for this course, as well as the algorithmic perspective that is not
necessarily related to cryptographic, albeit very useful in lattice-based cryptanalysis.

Contents
2.1 Reminder in Linear Algebra . 23
2.2 Fundamentals of Lattices . 24

2.2.1 Lattice Bases . 26
2.2.2 Fundamental Invariants . 27
2.2.3 Minkowski’s Theorem . 30
2.2.4 Dual Lattice . 32

2.3 Gram-Schmidt Orthogonalization . 34
2.3.1 Orthogonality . 34
2.3.2 Gram-Schmidt Process . 35
2.3.3 Gram-Schmidt Minimum . 37

2.4 Lattice Reduction . 38
2.4.1 Gauss-Lagrange Reduction: Size-Reduced Basis 38
2.4.2 The LLL Algorithm . 40

2.1 Reminder in Linear Algebra
We start by fixing some notations and relevant materials from linear algebra as they will be
ubiquitous throughout this course. Unless specified otherwise, the ambient vector space will be Rk

for some positive integer k, where (R,+, ·) denotes the field of real numbers. The ring of integers
is denoted by Z.

Vectors and Matrices

Vectors are written in bold lowercase letters x, and by convention they are column vectors. To
specify the entries of a vector x ∈ Rk in the canonical basis, we may write x = [xi]i∈J1,kK. Matrices
are written in bold uppercase letters A. For a ring R, and two positive integers m and k, we
denote by Rm×k the vector space or module of matrices with m rows, k columns and entries in
R. This space may be denoted by Mm,d(R) in other courses, and we thus insist on our change
of notation. We may specify a matrix A ∈ Rm×k by its columns as A = [ai]i∈J1,kK, which means
that the columns of A are the vectors a1, . . . ,ak ∈ Rm. We may also specify a matrix A by its
entries as A = [ai,j]i∈J1,mK,j∈J1,kK, meaning that the entry at the i-th row and j-th column of A is
ai,j . The transpose operator is denoted by a right superscript T , i.e., if A = [ai,j]i∈J1,mK,j∈J1,kK,

! Go to Contents 23

2. LATTICES

then AT = [aj,i]j∈J1,kK,i∈J1,mK. In a ring R where the complex conjugate makes sense, it is denote
by a bar, i.e., a. In such rings, the Hermitian operator is denoted by a right superscript H, i.e.,
if A = [ai,j]i∈J1,mK,j∈J1,kK, then AH = A

T
= AT = [aj,i]j∈J1,kK,i∈J1,mK. The k-dimensional vector

with only zero entries (resp. 1 entries) is denoted by 0k (resp. 1k) or simply 0 (resp. 1) if k is clear
from the context. The identity matrix of dimension k is denoted by Ik, and for a vector x ∈ Rk,
we denote by diag(x) the matrix of Rk×k whose diagonal entries are the entries of x.

For four positive integers m, k, n, d, we may sometimes define a matrix by its blocks as A =
[Ai,j]i∈J1,mK,j∈J1,kK ∈ Rmn×kd where each matrix Ai,j is in Rn×d.

Quadratic Forms, Inner Products, and Norms

We recall that every positive definite quadratic form Q over a real vector space V uniquely corre-
sponds to a bilinear form ⟨· , ·⟩ that is symmetric and positive definite by

∀(x,y) ∈ V 2, ⟨x , y⟩ = 1

2
(Q(x+ y)−Q(x)−Q(y)), and ∀x ∈ V, ⟨x , x⟩ = Q(x)

The ambient space Rk is a Hilbert space gifted with the usual inner product. In this course, we
denote it by ⟨· , ·⟩ and it is defined as

∀x,y ∈ Rk, ⟨x , y⟩ = xTy.

It is also equipped with the usual Euclidean norm ∥·∥2 defined by

∀x ∈ Rk,∥x∥2 =
√
xTx.

More generally, we define the ℓp norm ∥·∥p of Rk for any positive integer p by

∀x = [xi]i∈J1,kK ∈ Rk,∥x∥p =

 ∑
i∈J1,kK

|xi|p
1/p

,

and the ℓ∞ norm ∥·∥∞ by

∀x = [xi]i∈J1,kK ∈ Rk,∥x∥∞ = max
i∈J1,kK

|xi| .

Linear Independence, Spanning Set, Basis

Consider a ring R and M and R-module. For simplicity, take M ⊆ Rk for a positive integer k. Let
d be two positive integers and (bi)i∈J1,dK be a family of vectors of M . We say that (bi)i∈J1,dK is a
family of R-linearly independent vectors if and only if for all (λi)i∈J1,dK ∈ Rd, if

∑
i∈J1,dK λibi = 0

then λi = 0 for all i ∈ J1, dK. We say that (bi)i∈J1,dK is a spanning set (or spanning family) of
M if and only if SpanR(b1, . . . ,bd) = M , where SpanR(b1, . . . ,bd) = {

∑
i∈J1,dK λibi; (λi)i∈J1,dK ∈

Rd}. Finally, (bi)i∈J1,dK is a basis of M if and only if it is a spanning family of M and is R-
linearly independent. In that case, every x in M can be uniquely written along the basis by
x =

∑
i∈J1,dK xibi, with (xi)i∈J1,dK ∈ Rd. If B = [bi]i∈J1,dK ∈ Rk×d, we thus have

x = B ·

x1
...
xd

 .
Remark 2.1

Here the basis refer to basis of the ambient space or module M , that is with respect to scalars
in R. Later, we also use the term basis to talk about the basis of a lattice. We use the same
appellation which should be clear from the context.

2.2 Fundamentals of Lattices
We recall that Rk is equipped with the Euclidean norm ∥·∥2 and inner product ⟨· , ·⟩. We define
the closed ℓp ball of radius r ≥ 0 and center c ∈ Rk by Bp(c, r) = {x ∈ Rk : ∥x− c∥p ≤ r} for

24 Go to Contents !

2.2. FUNDAMENTALS OF LATTICES

any positive integer p. For the sake of completeness, we may also consider the hypercube of center
c ∈ Rk and half-side r by B∞(c, r) = {x ∈ Rk :∥x− c∥∞ ≤ r}. We use the right superscript o on
a ball to specify that it is open. As a result, we have

∀p ∈ N∗ ∪ {∞},∀c ∈ Rk,∀r ≥ 0,Bop(c, r) = {x ∈ Rk :∥x− c∥p < r}

We recall the definition of a discrete set. It can be more generally defined in topological spaces
but we only give the definition in a normed space.

Definition 2.1 (Discrete Set)

Let (V,∥·∥) be a normed space. Let S be an arbitrary subset of V . We say that S is a discrete
set if and only if

∀x ∈ S,∃r > 0,Bo∥·∥(x, r) ∩ S = {x}.

We are now able to define a lattice of Rk. Once again, in all generality, there other ways to
define lattices encompassing our definition. They involve Lie groups and measure theory. They
are however generalizations that are unnecessary for this course.

Definition 2.2 (Lattice)

Let k be a positive integer, and L ⊂ Rk. The set L is called a (Euclidean) lattice if and
only if L is a discrete subgroup of (Rk,+). A sublattice L′ ⊆ L is a discrete subgroup of the
lattice L.

Let L ⊂ Rk be a lattice. We can show that there exists an Z-linearly independent family
(bi)i∈J1,dK that is maximal in L such that L = Zb1 ⊕ . . . ⊕ Zbd. Since this family is linearly
independent, it is a basis of the d-dimensional vector subspace V = ⊕i∈J1,dKRbi. Additionally,
since it is maximal in L, i.e., adding a vector of L in the family makes it Z-linearly dependent, it is
called a basis of the lattice L. The integer d is common to all the bases of L and is called the rank
of the lattice L, which we denote d = rank(L). When d = k, we say that the lattice is full-rank.

Remark 2.2

Every basis (bi)i∈J1,kK of Rk generates a lattice by limiting the scalars to Z, i.e.,
SpanZ(b1, . . . ,bk) is a lattice. Conversely, every basis of a lattice of fixed rank d gener-
ates a d-dimensional vector space by extending the scalars to R.

Given a linearly independent family (bi)i∈J1,dK of Rk, we denote by L(b1, . . . ,bd) = Zb1⊕ . . .⊕
Zbd the lattice generated by this family. When using the canonical basis for Rk, and B = [bi]i∈J1,dK

the matrix of the bi, we also use L(B) or BZd to denote this lattice.

Example 2.1 (Strict Sublattice)

We have the following inclusions of lattices over R: 2Z ⊂ Z ⊂ 1
2Z. This simple example

highlights the fact that having the same rank and an inclusion is not sufficient to have the
equality of lattices, as opposed to vector spaces. For all positive integer d, Zd is a full-rank
lattice of Rd. The set Sd of the vectors of Zd for which the sum of the entries is even is a
strict sublattice of Zd with rank d.

We can define two families of lattices that are very important in lattice-based cryptography.
They are called q-ary lattices or q-periodic lattices. They essentially are lattice which are invariant
by q-step translation. More precisely, we define them as follows.

Definition 2.3 (q-ary Lattices)

Let m, d be two positive integers, and q be an integer larger or equal than 2. Let B be in

! Go to Contents 25

2. LATTICES

Zd×m. The following Lq(B) and L⊥q (B) are lattices of rank m, where

Lq(B) = BTZd + qZm

L⊥q (B) = {x ∈ Zm : Bx = 0 mod qZ}

They are called q-ary lattices.

Notice that the q-ary lattice L⊥q (B) is not defined by a basis. A basis is not necessary to
define and describe a lattice. However, to use lattices algorithmically, we do not know how to do
it without a basis. Hence every lattice used in algorithms should be describable by a basis that
should be efficient to compute.

2.2.1 Lattice Bases
Determinant of Matrices

We now dive in a little more in the bases of lattices. In this chapter, we only need elementary
properties of the determinant of matrices. The determinant is defined for square matrices. We
recall that a matrix A of Rd×d is invertible if and only if its columns form a basis of Rd, or
equivalently if its determinant detA is non-zero. We insist on the fact that this is no longer true
if one considers matrices over a ring that has zero divisors. In this course, for a ring R and a
positive integer d, we denote by GLd(R) the space or module of invertible matrices of Rd×d. In
commutative rings, we have the following Cramer’s formula.

Lemma 2.1 (Cramer’s Formula)

Let R be a commutative ring, and d a positive integer. Then, for all matrices A in Rd×d, it
holds that

A · Com(A)T = Com(A)T ·A = (detA)Id,

where Com(A) is the comatrix of A, i.e., the matrix of cofactors of A.

As a consequence of Lemma 2.1, if detA is a unit in R, then A is in GLd(R) and its inverse
is A−1 = (detA)−1Com(A)T . Additionally, the determinant verifies the following properties. For
all matrices A,B in Rd×d, we have

det(AB) = (detA)(detB)

det(A−1) = (detA)−1

det(AT) = detA.

Instructive Examples

We give a few examples in dimension 2 to build the intuition that allows to characterize the bases
of a lattice. Consider the example of Z2. The canonical basis (e1, e2) of R2 is also a basis of the
lattice Z2, represented by the identity matrix I2. Other bases are for example given by (e1,ua)
where ua = [a|1]T = ae1 + e2 for some a ∈ Z. If U is the matrix transforming the basis (e1, e2)
into (e1,ua), we have

U =

[
1 a
0 1

]
and U−1 =

[
1 −a
0 1

]
.

We notice that U and U−1 have integer entries, and that detU = 1 which is a unit of Z. Hence
U is in GL2(Z). Let us now take v1 = [−1|3]T , v2 = [−1|2]T and L = L(v1,v2). Even though the
basis (v1,v2) looks different geometrically, we can easily show that L = Z2.

Indeed, v1,v2 have integer entries proving that L ⊆ Z2, and e2 = v1 − v2 ∈ L, and e1 =
2e2 − v2 ∈ L proving that Z2 ⊆ L. The matrix U transforming (e1, e2) into (v1,v2) is

U =

[
−1 −1
3 2

]
and U−1 =

[
2 1
−3 −1

]
.

Once again, the inverse of U has integer coefficients and detU = −1 which also a unit in Z.

26 Go to Contents !

2.2. FUNDAMENTALS OF LATTICES

e1

e2

e1

u1

v1
v2

Figure 2.1: The lattice Z2 with different bases: (e1, e2), (e1,u1), (v1,v2).

Let us now look at the lattice generated by w1 = [1| − 1]T and w2 = [1|2]T . It is clear that
L(w1,w2) ⊆ Z2 but the transfer matrices are

U =

[
1 1
−1 2

]
and U−1 =

1

3

[
2 −1
1 1

]
.

In particular, we cannot write (e1, e2) as an integer linear combination of w1 and w2. Thence,
L(w1,w2) is a strict sublattice of Z2. Geometrically, we can quickly see that the area of the
parallelepiped described by (w1,w2) is larger than that of the one generated by (e1, e2). This
leads us to the following characterization of the bases of a lattice.

Lemma 2.2 (Characterization of Bases)

Let d, k be two positive integers, and (bi)i∈J1,dK, (b′i)i∈J1,dK two linearly-independent families
of Rk. We let B = [bi]i∈J1,dK and B′ = [b′i]i∈J1,dK be the matrix representations of those
bases. It holds that

L(B) = L(B′)⇐⇒ ∃U ∈ GLd(Z),B′ = BU.

Proof (Lemma 2.2). Suppose B′ = BU for some U ∈ GLd(Z). Then for all y in Rk, the
following equivalences hold:

y ∈ L(B′)⇐⇒ ∃x ∈ Zd,y = B′x

⇐⇒ ∃x ∈ Zd,y = B Ux︸︷︷︸
∈Zd

⇐⇒ ∃x′ ∈ Zd,y = B1x
′ (because U ∈ GLd(Z))

⇐⇒ y ∈ L(B),

which proves the desired equality.

Conversely, suppose that B and B′ represent the same lattice. Let i be in J1, dK. Then,
Bei ∈ L(B) = L(B′) so there exists vi in Zd such that Bei = B′vi. We then construct
V = [vi]i∈J1,dK, and by construction, Bei = B′Vei, which yields B = B′V for some square
integer matrix V. Similarly we construct a square integer matrix U such that B′ = BU.
Hence B′ = B′VU, which means VU = Id by linear independence of B′, and similarly
UV = Id. Therefore, U is in GLd(Z).

2.2.2 Fundamental Invariants
We now present several invariants of a lattice which arise at several occasions in cryptography and
cryptanalysis. By invariants, we mean that these quantities do not depend on the given basis of the
lattice. We note that certain bases may lead to the efficient computation of those quantities while
other bases might make it more tedeous. We will see later in the course that this categorization of
the different bases of a lattice is exactly what lattice-based cryptography relies on.

! Go to Contents 27

2. LATTICES

Volume of a Lattice

Before introducing the volume of a lattice, we give a few extra reminders of linear algebra.
For a linearly-independent family (bi)i∈J1,dK of Rk, the Gram matrix of the family (bi)i∈J1,dK

is G((bi)i∈J1,dK) = [⟨bi , bj⟩]i,j∈J1,dK. If the family is represented as a matrix B of Rk×d, we have
GB := G((bi)i∈J1,dK) = BTB. When clear from the context, we simply denote it as G.

Definition 2.4 (Volume of a Lattice)

Let k, d be positive integers and (bi)i∈J1,dK a linearly-independent family of Rk. Let B =
[bi]i∈J1,dK be the matrix representation of this basis. The determinant or volume of the
lattice L(B) is defined as

Vol L(B) = detL(B) =
√
detGB =

√
detBTB.

When L(B) is full-rank in Rk, i.e., d = k, we have Vol L(B) = |detB|.

We can now verify that the volume is indeed an invariant, meaning that it does not depend on
the chosen basis.

Lemma 2.3 (Invariance of the Volume)

Let k be a positive integer and L a lattice of Rk. The volume of the lattice L does not depend
on the choice of the basis.

Proof (Lemma 2.3). We define d = rankL. Let B,B′ be two basis of the lattice L, i.e.,
L = L(B) = L(B′). By Lemma 2.2, it holds that there exists U ∈ GLd(Z) such that
B′ = BU. We thus have

det(B′
T
B′) = det(UTBTBU) = (detU)2 det(BTB) = det(BTB),

where the last equality stems from the fact that detU ∈ Z× = {−1, 1}.

In cryptography, the determinant of a lattice is generally called the volume in reference to its
geometrical interpretation. Indeed, each basis defines a parallelepiped which has a volume that
coincides with the determinant of the lattice.

Definition 2.5 (Fundamental Parallelepiped)

Let k, d be positive integers and (bi)i∈J1,dK a linearly-independent family of Rk. Let B =
[bi]i∈J1,dK be the matrix representation of this basis. The centered fundamental parallelepiped
associated to the basis B is

P±(B) = {Bx;x ∈ [−1/2, 1/2)d}.

The fundamental parallelepiped associated to the basis B is

P(B) = {Bx;x ∈ [0, 1)d}.

Lemma 2.3 says that all the fundamental parallelepipeds of bases of the same lattice have the
same volume. We could therefore avoid the choice of a basis and describe the volume directly from
the lattice itself by studying the compact group Rk/L. This is however out of the scope of the
course. However, the volume allows to give the missing condition for a sublattice of same rank to
be equal to the surlattice.

Lemma 2.4 (Characterization by Volume)

Let L,L′ be two lattices such that L′ ⊆ L and rankL′ = rankL. Then, it holds that
Vol L ≤ Vol L′. Additionally, we have that L′ = L if and only if Vol L′ = Vol L.

28 Go to Contents !

2.2. FUNDAMENTALS OF LATTICES

b1

b2

b1

b2

Figure 2.2: Centered (Left) and Uncentered (Right) Fundamental Parallelepipeds.

Proof (Lemma 2.4). We denote by k the dimension of the lattice L, and by d its rank. Let
B,B′ be the matrices for some basis of L and L′ respectively. Let i be in J1, dK. It holds that
B′ei ∈ L′ ⊆ L. As a result, there exists ui is Zd such that B′ei = Bui. This therefore defines
a matrix U ∈ Zd×d such that B′ = BU. By definition of the volume, we have

Vol L′ = |detU|Vol L.

Since U has integer entries, it holds that detU ∈ Z. Additionally, because the columns of B′
and that of B are linearly independent, we necessarily have that U is in GLd(R). As a result,
|detU| ≥ 1 which proves the first claim.

If L = L′, it directly holds by Lemma 2.3 that Vol L = Vol L′. Now assume that Vol L =
Vol L′. This proves that |detU| = 1, thus proving that detU ∈ Z×. As a result, since U has
integer entries and unit determinant, it gives U ∈ GLd(Z). Hence, B′ = BU with U ∈ GLd(Z)
which, by Lemma 2.2, implies that L = L′.

Lemma 2.5 (Index of a Sublattice)

Let L,L′ be two lattices such that L′ ⊆ L and rankL′ = rankL. Then, if [L : L′] is the index
of L′ in L as an abelian group, we have

[L : L′] = Vol L′

Vol L
.

Example 2.2

We give a few examples to show that every assumption in the previous lemmas are important.

• Z2 and Zv1⊕Zv2, where v1 = 2e1 and v2 = 1
2e2, have the same volume and the same

rank, but are distinct.

• Z and Z2 have the same volume but not the same rank.

• L′ = Ze2 is a sublattice of L = Zv1 ⊕ Zv2 with v1 = 4e1 and v2 = 1
2e2, and verifies

Vol L′ ≤ Vol L.

In particular, although the volume characterizes a lattice, it is not sufficient to order them.

Minima of a Lattice

Since a lattice is a discrete set, there necessarily exist non-zero vectors of the lattice which are
the smallest possible with respect to the ambient norm. This allows to define quantities which are
essential in lattice-based cryptography, and that also are invariants of the lattice.

! Go to Contents 29

2. LATTICES

Definition 2.6 (First Minimum of a Lattice)

Let k be a positive integer, and L ⊂ Rk be a lattice. Let p be in N∗ ∩ {∞}. The first
minimum of L with respect to the norm ∥·∥p is defined as

λp1(L) = min{r > 0 :
∣∣Bp(0, r) ∩ L∣∣ > 1}

= min
x∈L\{0}

∥x∥p .

We can then define the successive minima of a lattice. Intuitively, the i-th minimum is the size
of the smallest ball that contains i linearly independent lattice vectors.

Definition 2.7 (Successive Minima of a Lattice)

Let k be a positive integer, and L ⊂ Rk be a lattice, and d = rankL. Let p be in N∗ ∩ {∞}.
For all i in J1, dK, the i-th minimum of L with respect to the norm ∥·∥p is defined as

λpi (L) = min{r > 0 : dim
(
SpanR(Bp(0, r) ∩ L)

)
≥ i}.

As the usual metric is the Euclidean norm, we omit the superscript p when p = 2. We note
however that considering other values of p may lead to very different quantities and problems as a
result.

2.2.3 Minkowski’s Theorem

Although the two invariants introduced in Section 2.2.2 are not sufficient to fully characterize a
lattice, they are linked by the following fundamental theorem.

Theorem 2.1 (Minkowski’s First Theorem)

Let d be a positive integer and L a lattice of rank d. It holds that λ1(L) ≤
√
d(Vol L)1/d.

The result is satisfying from a theoretical point of view. The exponent normalizes the volume
of the lattice to a unidimensional quantity, and the theorem announces that this normalization
seems to be a good approximation of the length of the shortest vector. There exist several proofs
for it. In this course, we adopt a geometrical approach linked to the counting of lattice points in
a ball. More precisely, we first prove the following theorem.

Theorem 2.2 (Convex Field Theorem, Minkowski)

Let d be a positive integer. Then, let C ⊆ Rd be a convex set that is symmetric and bounded,
and let L ⊂ Rd be a lattice of rank d. If Vol C > 2dVol L, then C contains a non-zero vector
of L.

Proof (Theorem 2.2). First, we observe that without loss of generality we can assume L = Zd.
Indeed, consider B ∈ GLd(R) a basis of L, i.e., L = BZd. Then Vol (B−1 ·C) = Vol C/Vol L.
Because B−1 ·C is also convex, symmetric and bounded, it suffices to show that if Vol C > 2d

then there exists a non-zero integer vector in C.
For that we consider the “half convex” C ′ = { 12x;x ∈ C}. By assumption, it thus holds that

Vol C ′ = Vol C/2d > 1. We now show that there necessarily exists two distinct translations of
C ′ by Zd which are non disjoint. Assume towards contradiction that none of the translation
intersect. For a positive integer r > 0, we consider the family Fr = {C ′ + u;u ∈ [−r, r]d}.
We denote by D the diameter of C, and by K the hypercube [−r − D, r + D]d which by
construction contains the entire family Fr. We thus have

VolFr = (2⌊r⌋+ 1)dVol C ′ ≤ VolK = (2r + 2D)d,

30 Go to Contents !

2.2. FUNDAMENTALS OF LATTICES

which can written as

Vol C ′ ≤
(
1 +

2D − 1

2r + 1

)d

.

Since r is arbitrary, we thus have that Vol C ′ ≤ lim
r→+∞

(1 + (2D − 1)/(2r + 1))d = 1, thus

contradicting the assumption that Vol C ′ > 1.
Thence, there exists two translations of C ′ that intersect, meaning that there exists u1 ̸= u2

in Zd such that (C ′+u1)∩(C ′+u2) ̸= ∅. As a result, there exists x′ ∈ Rd such that x′−u1 ∈ C ′
and x′−u2 ∈ C ′. Define x = x′−u1. Then x ∈ C ′ and x−u ∈ C ′ for u = u2−u1 ̸= 0. Since
C ′ is symmetric, u − x is also in C ′, and by convexity, the segment Jx,u − xK is included in
C ′. Henceforth, the middle of that segment m = 1

2u is also in C ′.
All in all, this shows that 2m = u is in C. Yet u is in Zd \ {0} thus proving the theorem.

The proof of Minkowski’s First Theorem is a natural consequence of the Convex Field Theorem.
We provide the proof here.

Proof (Theorem 2.1). The open ball C = Bo2(0, λ1(L)) is a convex set that is symmetric
bounded, and by definition of λ1(L), it holds that C∩L = {0}. From the previous theorem, its
volume must therefore be less than or equal to 2dVol L. Additionally, C contains the hypercube
H = Bo∞(0, λ1(L)/

√
d). Indeed, for all x in H, we have ∥x∥2 ≤

√
d∥x∥∞ <

√
dλ1(L)/

√
d =

λ1(L), meaning that x belongs to C. As a result, Vol C ≥ VolH = (2λ1(L)/
√
n)d. In the

end, we get (
2λ1(L)√

d

)d

≤ Vol C ≤ 2dVol L,

which can be rewritten as
λ1(L) ≤

√
d(Vol L)1/d,

as desired.

We notice that in the proof, we lower bound the volume of the ball by the volume of the
inscribed hypercube. We can instead use the volume of the ball directly, which is a little more
complex. For that we use the following formula.

Lemma 2.6 (Volume of a Hyperball)

Let d be a positive integer, and r, p a positive real. It holds that

Vol Bp(0, r) =
(2rΓ(1/p+ 1))d

Γ(d/p+ 1)

where Γ is the Gamma function defined by Γ(x) =
∫ +∞
0

e−ttx−1dt for all x > 0. In particular
for p = 2, we have Vol B2(0, r) = (

√
πr)d/Γ(d/2 + 1).

Lemma 2.6 used in the proof of Theorem 2.1 above thus gives the following bound

λ1(L) ≤
2√
π
· (Γ(d/2 + 1)Vol L)1/d.

Using upper bounds on the Gamma function, namely Γ(x+ 1) <
√
2πxxe−x(x2 + x/3 + 1/18)1/4,

we get

λ1(L) ≤
√

2

eπ

√2π(d2
4

+
d

6
+

1

18

)1/4d

·
√
d(Vol L)1/d ≤ 0.67752 ·

√
d(Vol L)1/d

Example 2.3

It is easy to construct lattices that have a shortest vector which has length arbitrar-
ily lower than this upper bound. For that, for all 0 < ε < 1, consider the lattice
L = L(εe1, 1εe2, e3, . . . , ed). Then, Vol L = 1 so the upper bound does not depend on ε.

! Go to Contents 31

2. LATTICES

However, λ1(L) = min(ε, 1/ε, 1) = ε. We can therefore make ε go to 0, without changing the
upper bound.

Remark 2.3

The upper bound is actually optimal up to a constant factor. More precisely, for all d, there
exists a lattice L of rank d such that λ1(L) = c

√
d(Vol L)1/d for a constant c. Theorem 2.1

shows that c ≤ 1, while our finer analysis shows that c ≤ 1.4 ·
√
2/(eπ) ≤ 0.67752.

It is also very natural to study the Hermite constant expressing the maximal ration between
the length of the shortest vectors and the normalized volume. Let d be a positive integer. We
denote by Ld the set of lattices of rank d. The Hermite constant of order d is defined by

γd = sup
L∈Ld

λ1(L)2

(Vol L)2/d
.

We have the following associated theorem.

Theorem 2.3 (Hermite)

For all integer d larger or equal than 2, it holds that γd ≤ (γ2)
d−1, where γ2 = 4/3.

2.2.4 Dual Lattice
Another fundamental notion of lattice theory is that we can define the dual of any lattice, and
possibly work in this dual space. We caution here that the term dual lattice is not the same as the
notion of a dual space for a vector space V , which would denote the space of all linear form of V .

Definition 2.8 (Dual Lattice)

Let L be a lattice. The dual lattice of L, denoted by L∗ or L∨, is the lattice defined by

L∗ =
{
y ∈ SpanR(L) : ∀x ∈ L, ⟨x , y⟩ ∈ Z

}
.

Example 2.4

Let us first look at the simplest lattice, i.e., L = Zd. Let x be in L∗. Since the inner product
with any vector of Zd must be an integer, we can take the canonical basis vectors of Rd,
which are indeed in Zd. Hence, for all i in J1, dK, we have ⟨x , ei⟩ ∈ Z which proves that
x ∈ Zd. Reciprocally, for all x,y in Zd, ⟨x , y⟩ ∈ Z. Thence, L∗ = L = Zd. So the lattice Zd

is self-dual.
Let us now take a more interesting example, namely L = αZd for a non zero real α. Let
x be in L∗. Similarly as before, for all i in J1, dK, we have ⟨x , αei⟩ ∈ Z which means that
x ∈ α−1Zd. Reciprocally, for all (x,y) in α−1Zd × L, ⟨x , y⟩ ∈ Z. Thence, L∗ = α−1Zd.

We can generalize the result of Example 2.4 to arbitrary lattices and not just the integer lattice.

Lemma 2.7 (Dual Lattice Scaling)

Let k, d be two positive integers, and L ⊂ Rk a lattice of rank d. For all α ̸= 0, it holds that
(αL)∗ = α−1L∗.

Proof (Lemma 2.7). First, let x be in α−1L∗, i.e., x = α−1x̃ with x̃ ∈ L∗. Let y be in αL,
i.e., y = αỹ for ỹ ∈ L. It then holds that ⟨x , y⟩ = α−1α⟨x̃ , ỹ⟩ = ⟨x̃ , ỹ⟩ ∈ Z by definition of
the dual. Additionally, it holds that

x ∈ α−1SpanR(L) = SpanR(L) = SpanR(αL),

which concludes proving that x ∈ (αL)∗. Hence α−1L∗ ⊆ (αL)∗.

32 Go to Contents !

2.2. FUNDAMENTALS OF LATTICES

0 0

Figure 2.3: The scaled lattice L = 3
2Z

2 and its dual L∗ = 2
3Z

2. The gray points represent the
lattice Z2 in the background for reference.

Reciprocally, let x be in (αL)∗ and define x̃ = αx. Let y ∈ L. We have ⟨x̃ , y⟩ = ⟨αx , y⟩ =
⟨x , αy⟩ ∈ Z by definition of (αL)∗. Finally, we also have x ∈ SpanR(αL) = α−1SpanR(L)
similarly as before. So (αL)∗ ⊆ α−1L∗, thus proving equality.

Since we can associate a basis to any lattice, a natural question is whether we can make connections
between a basis of the lattice L and a basis of its dual lattice L∗. This leads us to the notion of
dual basis.

Definition 2.9 (Dual Lattice)

Let k, d be two positive integers and (bi)i∈J1,dK a linearly independent family of Rk. Let
B = [bi]i∈J1,dK be the matrix representation of this lattice basis. The dual basis of (bi)i∈J1,dK

is the unique basis D = [di]i∈J1,dK ∈ Rk×d such that

• SpanR(B) = SpanR(D),

• BTD = Id.

The dual basis is intrinsically link to the primal basis with the second condition. In particular,
since B is full-rank, it holds that BTB is in GLd(R), and as a result, the dual basis D is the
Moore-Penrose pseudo-inverse of BT , denoted by (BT)+ = B(BTB)−1. We then have the following
results.

Lemma 2.8 (Dual Lattice Properties)

Let k, d be two positive integers, and L ⊂ Rk a lattice of rank d with basis B ∈ Rk×d, and
dual basis D. It then holds that L∗ = L(D), that (L∗)∗ = L and that Vol L∗ = (Vol L)−1.

Proof (Lemma 2.8). Let y be in L(D). There exists x ∈ Zd such that y = Dx. First, we
have y ∈ SpanR(D) = SpanR(B), and thus, for L = L(B), it yields ⟨L , y⟩ = (Zd)TBTDx =
(Zd)Tx ⊆ Z. This shows y ∈ L∗.

Conversely, let y be in L∗. We thus have y ∈ SpanR(B) = SpanR(D) and as a result there
exists x ∈ Rd such that y = Dx. By definition of the dual lattice, for all t ∈ Zd, it holds that
⟨Bt ,y⟩ ∈ Z. By taking t to be the vectors ei of the canonical basis of Rd, we get BTDx ∈ Zd.
Since we also have the identity BTD = Id, this proves that x ∈ Zd. Hence, y ∈ DZd = L(D).
As a result we have L∗ = L(D).

Now, recalling that the dual basis D is (BT)+, we have that the dual basis of D is (DT)+ =
(((BT)+)T)+. Yet, the pseudo-inverse and transpose commute and are involutions. Hence,
(DT)+ = B. We can also verify that using the closed-form expressions. Using the previous
property, it yields (L∗)∗ = (L(D))∗ = L((DT)+) = L(B) = L.

For the last property, we simply have Vol L∗ =
√
det(DTD) =

√
det((BTB)−1) =

! Go to Contents 33

2. LATTICES

(Vol L)−1, as claimed.

We can now wonder about the other lattice invariants that we have introduced in Section 2.2.2.
We have just proven how to link the volume of a lattice with the volume of its dual lattice. In
particular, it shows that if the lattice is dense, then its dual is sparse. We can visualize this
property in Figure 2.3. The other invariants that we have defined were the successive minima. The
following results allow us to link the minima of a lattice with that of its dual.

Lemma 2.9 (Dual Lattice Minima Bound)

Let d be a positive integer and L a lattice of rank d. It then holds that

• λ1(L) · λ1(L∗) ≤ d,

• λ1(L) · λd(L∗) ≥ 1.

Proof (Lemma 2.9). Using Minkowski’s first theorem (Theorem 2.1) on both L and L∗, we
get that λ1(L) ≤

√
d(Vol L)1/d and λ1(L∗) ≤

√
d(Vol L∗)1/d. By multiplying both identities

and using the third property of Lemma 2.8, we indeed get λ1(L) · λ1(L∗) ≤ d.

For the second inequality, we proceed as follows. Let x be in L such that ∥x∥2 = λ1(L).
Suppose that: ∀y ∈ L∗, ∥y∥2 ≤ λd(L∗) =⇒ ⟨x , y⟩ = 0. Then, since there are at least d

linearly independent vectors of L∗ of norm less than or equal to λd(L∗) (by Definition 2.7),
we have that ⟨x , SpanR(L∗)⟩ = {0}. Since SpanR(L∗) = SpanR(B) for a basis B of L = L(B)
and that x is also in SpanR(B), it yields that ⟨x , x⟩ = 0 and thus x = 0. Yet, x is non-zero
by definition of λ1.

This contradiction thus gives the existence of y in L∗ of norm less than λd(L∗) and non-
orthogonal to x. By Cauchy-Schwarz, we have

λ1(L)λd(L∗) ≥∥x∥2∥y∥2 ≥
∣∣⟨x , y⟩∣∣ ∈ R+∗ ∩ Z.

So λ1(L)λd(L∗) ≥ 1.

In 1993, Banaszczyk [Ban93] proved a tighter upper bound than that of Lemma 2.9.

Theorem 2.4 (Banaszczyk’s Theorem [Ban93])

Let d be a positive integer and L a lattice of rank d. It then holds that

1 ≤ λ1(L) · λd(L∗) ≤ d

2.3 Gram-Schmidt Orthogonalization
As we will see in Section 2.4, lattice reduction techniques heavily use the Gram-Schmidt Orthog-
onalization process. Intuitively, it is easier to combine long vectors to find short ones if those long
vectors are close to orthogonal. Additionally, note that if a lattice L has a basis that is orthogonal,
then one can find its shortest vectors directly. Indeed, if B is a basis of L such that its Gram
matrix BTB is diagonal, then every orthogonal basis of L is a rotation of B. This yields that
λ1(L) = mini∈J1,dK∥bi∥2. However, not all lattices have an orthogonal basis. In this case, the
idea is to find a basis that is as orthogonal as it can get, that is a basis B that minimizes all the
cross-product

∣∣⟨bi , bj⟩
∣∣ for i ̸= j. To do so, the Gram-Schmidt Orthogonalization is paramount.

2.3.1 Orthogonality

We recall that in a euclidean space (V, ⟨· , ·⟩), two vectors x and y are said orthogonal if and only
if ⟨x , y⟩. For all subspace W of V , the orthogonal of W is the subspace

W⊥ = {y ∈ V : ∀x ∈W, ⟨x , y⟩ = 0}.

34 Go to Contents !

2.3. GRAM-SCHMIDT ORTHOGONALIZATION

We recall that we have the direct sum V = W ⊕ W⊥, which in particular yields dimW⊥ =
dimV − dimW and W ∩W⊥ = {0}. We define k = dimV and d = dimW . A projection is a
linear map P such that P 2 = P . This projection is called orthogonal projection if for all (x,y) in
V 2, it holds that ⟨P (x) , y⟩ = ⟨x , P (y)⟩. In that case, there exists a unique projection P⊥ such
that P + P⊥ = idV . As expected, if the range of P is the subspace W , then the range of P⊥ is
W⊥. Equivalently, it holds that kerP =W⊥ and kerP⊥ =W .

Let (bi)i∈J1,dK be a basis of W and B its matrix representation in the canonical basis of V .
The matrix of P in the canonical basis of V is P = B(BTB)−1BT , and that of P⊥ is Ik − P. A
family (bi)i∈J1,dK is called orthogonal if for all (i, j) ∈ J1, dK2 such that i ̸= j, then ⟨bi ,bj⟩ = 0. It
holds that an orthogonal family is necessarily linearly independent. If (bi)i∈J1,dK is an orthogonal
family that is also a basis of W , then for all x in W , it holds

x =
∑

i∈J1,dK

⟨x , bi⟩
∥bi∥22

bi.

In particular, if we denote by Pi the orthogonal projection on the subspace Rbi, we have Pi(x) =
⟨x,bi⟩
∥bi∥22

bi, and that the linear form x 7→ ⟨x , bi⟩/∥bi∥22 gives the coordinate of x along bi.

A matrix B ∈ Rd×d for R ⊆ R is called orthogonal if BTB = Id = BBT . The set of orthogonal
matrices of dimension d is denoted by Od(R).

2.3.2 Gram-Schmidt Process

It is known that there always exists orthogonal bases of euclidean spaces, but even better, the
Gram-Schmidt Orthogonalization process gives an algorithm to compute them. This process is
crucial when studying lattices from an algorithmic perspective. So let (bi)i∈J1,dK be a linearly
independent family of Rk. We define the new family (b∗i)i∈J1,dK iteratively with the following
process.

Algorithm 2.1: GSO (Gram-Schmidt Orthogonalization)
Input: Linearly independent family (bi)i∈J1,dK of Rk.

1. b∗1 ← b1

2. for i = 2 to d

(a) b∗i ← bi −
∑

j∈J1,i−1K

⟨bi , b
∗
j ⟩∥∥∥b∗j∥∥∥2
2

b∗j

Output: (b∗i)i∈J1,dK

Intuitively, each new vector is constructed by “orthogonally removing” the contribution of the
vector space already spanned. Formally, b∗2 = b2−P1(b2) = P⊥1 (b2), b∗3 = b3−P1(b3)−P2(b3) =
b3 − PSpan(b1,b2)(b3) = P⊥Span(b1,b2)

(b3), and so on.

Lemma 2.10 (Span Preservation)

Let k, d be two positive integers, and (bi)i∈J1,dK a linearly independent family of Rk. We
denote by (b∗i)i∈J1,dK = GSO((bi)i∈J1,dK) obtained from Algorithm 2.1. Then (b∗i)i∈J1,dK is
an orthogonal family, and for all i in J1, dK, we have SpanR(b1, . . . ,bi) = SpanR(b

∗
1, . . . ,b

∗
i).

Proof (Lemma 2.10). For all i in J1, dK, we define the predicate P(i): “(b∗j)j∈J1,iK is an
orthogonal family and SpanR(b1, . . . ,bi) = SpanR(b

∗
1, . . . ,b

∗
i)”. We prove P(i) by induction.

For clarity, we define µi,j = ⟨bi , b
∗
j ⟩/
∥∥∥b∗j∥∥∥2

2
for all 1 ≤ j < i ≤ d.

Initialization. Since b∗1 = b1 ̸= 0, it is an orthogonal family, and trivially SpanR(b1) =
SpanR(b

∗
1). This proves P(1).

! Go to Contents 35

2. LATTICES

Induction. Let i be in [d− 1] and assume P(i). Let j be in J1, iK. We have

⟨b∗i+1 , b
∗
j ⟩ = ⟨bi+1 , b

∗
j ⟩ −

∑
ℓ∈J1,iK

µi+1,ℓ⟨b∗ℓ , b∗j ⟩

= ⟨bi+1 , b
∗
j ⟩ − µi+1,j

∥∥∥b∗j∥∥∥2
2
(by P(i))

= 0,

which proves the orthogonality. Then, by construction, bi+1 = b∗i+1 +∑
ℓ∈J1,iK µi+1,ℓb

∗
ℓ and thus in the span SpanR(b

∗
1, . . . ,b

∗
i+1). By P(i), it

thus holds that SpanR(b1, . . . ,bi+1) ⊆ SpanR(b
∗
1, . . . ,b

∗
i+1). Reciprocally, b∗i+1

is in SpanR(b
∗
1, . . . ,b

∗
i ,bi+1). By P(i), we obtain SpanR(b

∗
1, . . . ,b

∗
i+1) ⊆

SpanR(b
∗
1, . . . ,b

∗
i ,bi+1) = SpanR(b1, . . . ,bi+1). All in all, this proves P(i+ 1).

As a result, the first part of P(d) proves the first lemma statement, while (P(i))i∈J1,dK proves
the second lemma statement.

In a basis of Rk, we can describe the process in matrix form directly by the following.

B = B∗U, with U =

1 µ2,1 . . . µd,1

0 1
...

. . . µd,d−1
1

 ,

where B = [bi]i∈J1,dK and B∗ = [b∗i]i∈J1,dK. The entries µi,j of U are generally called the Gram-
Schmidt coordinates of bi. We note that U has determinant 1 but the Gram-Schmidt coordinates
are reals and not necessarily integers. It always possible to obtain an orthonormal basis by nor-
malizing the b∗i . However, this also normalizes the volume to 1, thus loosing a property of the
underlying lattice. In this course, we will not normalize the basis unless specified otherwise. In
particular, the Gram-Schmidt Orthogonalization preserves the volume information of the lattice
spanned by the (bi)i∈J1,dK.

Lemma 2.11

Let k, d be two positive integers, and (bi)i∈J1,dK a linearly independent family of Rk. Let B =
[bi]i∈J1,dK be the matrix representation of this basis. We let (b∗i)i∈J1,dK = GSO((bi)i∈J1,dK).
It holds that

Vol L(B) =
∏

i∈J1,dK

∥b∗i ∥2 .

Proof (Lemma 2.11). We define B∗ = [b∗i]i∈J1,dK. We thus have B = B∗U where U is the
upper triangular matrix of the Gram-Schmidt coordinates. We then have

Vol (L(B))2 = det(BTB) = (detU)2 det(B∗TB∗) = det(B∗TB∗),

where the last equality comes from the fact that detU = 1. Finally, since B∗ is orthogonal,
its Gram matrix is B∗TB∗ = diag(∥b∗1∥

2
2 , . . . ,

∥∥b∗d∥∥22). As a result, we have

Vol L(B) =
∏

i∈J1,dK

∥b∗i ∥2 .

Corollary 2.1 (Hadamard Inequality)

Let k, d be two positive integers, and (bi)i∈J1,dK a linearly independent family of Rk. Let

36 Go to Contents !

2.3. GRAM-SCHMIDT ORTHOGONALIZATION

B = [bi]i∈J1,dK be the matrix representation of this basis. It holds that

Vol L(B) ≤
∏

i∈J1,dK

∥bi∥2 .

Proof (Corollary 2.1). We define B∗ = [b∗i]i∈J1,dK, where (b∗i)i∈J1,dK = GSO((bi)i∈J1,dK). By
the Pythagorean theorem, we have

∥bi∥22 =∥b∗i ∥
2
2 +

∑
j∈J1,i−1K

µ2
i,j

∥∥∥b∗j∥∥∥2
2
,

thus proving that ∥bi∥2 ≥
∥∥b∗i ∥∥2. By Lemma 2.11, we get

Vol L(B) =
∏

i∈J1,dK

∥b∗i ∥2 ≤
∏

i∈J1,dK

∥bi∥2 ,

as desired.

Finally, we give a final result which comes in very handy to obtain guarantees of lattice reduction
techniques later on in this course.

Lemma 2.12

Let k, d be two positive integers, and (bi)i∈J1,dK a linearly independent family of Rk. Let B =
[bi]i∈J1,dK be the matrix representation of this basis. We let (b∗i)i∈J1,dK = GSO((bi)i∈J1,dK).
It holds that

λ1(L(B)) ≥ min
i∈J1,dK

∥b∗i ∥2 .

Proof (Lemma 2.12). Let b be in L(B) \ {0}. There exists an integer i0 ∈ J1, nK and
k1, . . . , ki0 in Z such that ki0 ̸= 0 and b =

∑
i∈J1,i0K kibi. By using the definition of the

Gram-Schmidt vectors and Lemma 2.10, we get that there exists k′1, . . . , k′i0−1 in R such that

b = ki0b
∗
i0

+
∑

i∈J1,i0−1K k
′
ib
∗
i . The Pythagorean theorem thus gives ∥b∥22 = |ki0 |

2
∥∥∥b∗i0∥∥∥22 +∑

i∈J1,i0−1K

∣∣k′i∣∣2∥∥b∗i ∥∥22. Since the right-hand side sum is positive and since ki0 ∈ Z, we get

∥b∥22 ≥
∥∥∥b∗i0∥∥∥22 ≥ mini∈J1,dK

∥∥b∗i ∥∥22. By choosing b such that ∥b∥2 = λ1(L(B)), we obtain the
result.

From now on, when B = [bi]i∈J1,dK, we will simply denote by the B∗ the matrix whose columns
are GSO((bi)i∈J1,dK).

2.3.3 Gram-Schmidt Minimum

An interesting lattice quantity, that will be relevant when performing sampling over the lattice,
is the Gram-Schmidt minimum. It is essentially the minimal Gram-Schmidt length over all the
possible bases of a lattice. For a matrix A ∈ Rk×d, we denote by∥A∥∞ = maxi∈J1,dK∥Aei∥2, where
ei is the i-th canonical basis vector.

Definition 2.10 (Gram-Schmidt Minimum)

Let k, d be two positive integers, and L ⊂ Rk a lattice of rank d. Temporarily, we denote by
B(L) the set of all basis of the lattice L. The Gram-Schmidt minimum of L is defined by

λGSO(L) = min
B∈B(L)

∥∥GSO(B)
∥∥
∞ = min

B∈B(L)
max
i∈J1,dK

∥b∗i ∥2 .

The Gram-Schmidt minimum was introduced by Gentry, Peikert and Vaikuntanathan in 2008 [GPV08]

! Go to Contents 37

2. LATTICES

and was related to the usual successive minima of a lattice in the following result.

Lemma 2.13 (Gram-Schmidt and Successive Minima)

Let k, d be two positive integers, and L ⊂ Rk a lattice of rank d. It holds that

λ1(L) ≤ λGSO(L) ≤ λd(L) ≤
√
d · λGSO(L).

2.4 Lattice Reduction
We have seen that all the bases of a lattice differ from a integer transformation with determinant
±1. The set of such transformation is known as the unimodular group GLd(Z). We can thus
summarize this result by the group action

GLd(Z)×GLd(R) −→ GLd(R)
(U,B) 7−→ BU,

and a lattice corresponds to an orbit of this action. From this standpoint, lattice reduction comes
down to finding “good” representatives for each orbit, where the term “good” depends on the
context. In algorithmic and cryptography, a good representative is a basis that is as orthogonal
as it can get and composed of the shortest possible vectors. We also would like to find such
representatives constructively and efficiently. The state-of-the-art suggests that this is a hard
problem, as we will see in Chapter 3, and we must therefore find a compromise between the quality
(length if the basis vectors) guaranteed by the algorithm and the execution time.

2.4.1 Gauss-Lagrange Reduction: Size-Reduced Basis
It is possible to get an intuitive idea of reduction mechanisms for lattices of dimension 2. Let us
consider a lattice described by a “very bad basis” (b1,b2), where without loss of generality∥b1∥2 ≤
∥b2∥2. By very bad basis, we mean that the vectors are very long and ⟨b1 , b2⟩/∥b1∥2∥b2∥2 =
cos(b1,b2) is close to ±1. We denote by (b∗1,b

∗
2) its Gram-Schmidt Orthogonalization, and see

that∥b2∥22 =∥b2∥22 · (1− cos(b1,b2)
2). Said differently, it means that b∗2 is rather short. Although

b∗2 is not a vector in the lattice, there are lattice points close to b∗2. For example, consider the
vector

b′2 = b2 −

 ⟨b2 , b
∗
1⟩∥∥b∗1∥∥22
b1.

We thus have a new basis for the lattice, and it is possible that b′2 is much smaller that b2. In that
case, we made progress and we reiterate the process on the basis (b′2,b1). Each time we reduce
the vectors as such, we decrease the quantity∥b1∥2∥b2∥2. The transformations preserve the lattice
and thus its volume. The Hadamard inequality from Corollary 2.1 thus says that we cannot reduce
the size of the basis indefinitely. Assuming we gain a factor strictly larger than 1 at each step on
the product, such an algorithm should terminate rather quickly. What we have described is called
the Gauss-Lagrange Algorithm, which we describe in Algorithm 2.2.

Algorithm 2.2: GL (Gauss-Lagrange)
Input: Lattice basis (b1,b2)

1. (v1,v2)← (b1,b2)
2. Repeat

(a) if ∥v2∥2 <∥v1∥2, then (v1,v2)← (v2,v1)

(b) µ← ⌊⟨v1 , v2⟩/∥v1∥22⌉
(c) if µ = 0, then return (v1,v2)
(d) else v2 ← v2 − µv1.

Output: Reduced basis (v1,v2)

Underlying this algorithm is the fundamental idea of taking as the new basis the best integer
approximation of the Gram-Schmidt Orthogonalization of the original basis. We now formalize
this notion.

38 Go to Contents !

2.4. LATTICE REDUCTION

Definition 2.11 (Size-Reduced Basis)

Let k, d be two positive integers, and (bi)i∈J1,dK be a linearly independent family of Rk. We
let (b∗i)i∈J1,dK = GSO((bi)i∈J1,dK). The basis (bi)i∈J1,dK is called size-reduced if

max
1≤j<i≤d

∣∣∣∣∣∣∣∣
⟨bi , b

∗
j ⟩∥∥∥b∗j∥∥∥2
2

∣∣∣∣∣∣∣∣ ≤
1

2
.

These ideas also gave rise to the size reduction algorithm which we now give in Algorithm 2.3.

Algorithm 2.3: SizeReduce (Size-Reduction)
Input: Lattice basis (bi)i∈J1,dK

1. (b∗i)i∈J1,dK = GSO((bi)i∈J1,dK) ▷ Algorithm 2.1
2. for i = 2 to d

(a) for j = i− 1 to 1

i. bi ← bi −

⌊
⟨bi,b

∗
j ⟩∥∥∥b∗

j

∥∥∥2

2

⌉
bj

Output: Size-reduced basis (bi)i∈J1,dK

Lemma 2.14 (Correctness)

Let k, d be two positive integers, and (bi)i∈J1,dK be a linearly independent family of Rk. Let
(b′i)i∈J1,dK = SizeReduce((bi)i∈J1,dK) from Algorithm 2.3. Then (b′i)i∈J1,dK is a size-reduced
basis of L((bi)i∈J1,dK).

Proof (Lemma 2.14). The proof relies on the fact the loops do not modify the Gram-
Schmidt (b∗i)i∈J1,dK. We denote by Pi−1 the orthogonal projection onto SpanR(b1, . . . ,bi−1)

⊥,
so that by definition b∗i = Pi−1(bi). By Lemma 2.10, we have SpanR(b1, . . . ,bi−1) =
SpanR(b

∗
1, . . . ,b

∗
i−1). We also have that for all j in J1, i − 1K and α in R, Pi−1(bi − αbj) =

Pi−1(bi), which implies the invariance of the Gram-Schmidt vectors all along the algorithm.
Now let b

(j)
i be the vector obtained after the subtraction of a multiple of bj to bi in the

second loop. For j in J1, i− 2K, we have by definition

⟨b(j)
i , b∗j ⟩ = ⟨b

(j+1)
i , b∗j ⟩ −

 ⟨b(j+1)
i , b∗j ⟩∥∥∥b∗j∥∥∥2

2

 ⟨bj , b
∗
j ⟩.

Even though the current bi are not those from the start, the invariance of the Gram-Schmidt

vectors gives ⟨bj , b
∗
j ⟩ =

∥∥∥b∗j∥∥∥2
2
. Hence, the j-th coordinate of the Gram-Schmidt of b(j)

i is

µ′i,j = ⟨b
(j)
i , b∗j ⟩/

∥∥bj

∥∥2
2
. The equality above then gives

∣∣∣µ′i,j∣∣∣ ≤ 1/2.
We then remark that, for example looking at the matrix U, subtracting a multiple of bj to

a vector only impacts the first j coordinates in the Gram-Schmidt basis. The following steps
in the second loop thus do not modify the µi,j that are already reduced.

We now only have to show that the lattice is preserved. It is not difficult to be convinced
that the matrix corresponding to a transfer in the internal loop has integer coefficients and
determinant 1. In fact, the transfer matrix in the iteration (i, j) of the inner loop is the
following shear matrix

Id −

 ⟨bi , b
∗
j ⟩∥∥∥b∗j∥∥∥2
2

Ej,i.

! Go to Contents 39

2. LATTICES

2.4.2 The LLL Algorithm

Informally, the idea of the Gauss-Lagrange algorithm presented in Algorithm 2.2 is to chain size
reductions, and swapping b1 and b2 whenever ∥b2∥2 is smaller than ∥b1∥2. This means we make
“progress” in the reduction of the original basis. It is natural to try and extend this approach
to higher dimensions, but the situation is more problematic. We need a quantitative criterion to
measure such progress in order to know when to swap vectors. We also need this progress to allow
a constant gain factor over the Hadamard inequality from Corollary 2.1 at each step if we hope
to have only a polynomial number of size reductions. These thoughts lead Lenstra, Lenstra and
Lovàsz to propose the LLL algorithm [LJL82] in 1982. In this course, we only present the algorithm.
A detailed analysis giving the polynomial complexity is given in appendix. We start by giving the
notion of an LLL-reduced basis.

Definition 2.12 (LLL-Reduced Basis)

Let k, d be two positive integers, and (bi)i∈J1,dK be a linearly independent family of Rk. We
let (b∗i)i∈J1,dK = GSO((bi)i∈J1,dK). The basis (bi)i∈J1,dK is called LLL-reduced if

• (bi)i∈J1,dK is size-reduced;

• For all i in J1, d− 1K, we have

3

4
∥b∗i ∥

2
2 ≤

∥∥∥∥∥∥ ⟨bi+1 , b
∗
i ⟩∥∥b∗i ∥∥22 b∗i + b∗i+1

∥∥∥∥∥∥
2

2

(2.1)

Equation (2.1) is known as the Lovàsz Condition. The motivation behing LLL-reduced bases
is summarized in the following property: the Gram-Schmidt do not decrease too fast, and the first
vector of the basis cannot be too long.

Lemma 2.15

Let k, d be two positive integers, and (bi)i∈J1,dK be a linearly independent family of Rk.
Assume that the basis (bi)i∈J1,dK is LLL-reduced. It holds that

• For all i ∈ J1, d− 1K,
∥∥b∗i ∥∥2 ≤ √2∥∥b∗i+1

∥∥
2
;

• ∥b1∥2 ≤ 2(d−1)/2λ1(L((bi)i∈J1,dK)).

Proof (Lemma 2.15). The first property comes from Equation (2.1) and the size-reduced
criterion. Indeed, we have

3

4
∥b∗i ∥

2
2 ≤

∥∥µi+1,ib
∗
i + b∗i+1

∥∥2
2

=
∣∣µi+1,i

∣∣2∥b∗i ∥22 +∥∥b∗i+1

∥∥2
2

≤ 1

4
∥b∗i ∥

2
2 +
∥∥b∗i+1

∥∥2
2
,

which gives the first statement. Then, by recursively using the first property, we get ∥b1∥2 =
∥b∗1∥2 ≤ 2(i−1)/2

∥∥b∗i ∥∥2 for all i in J1, dK. A fortiori, we get

∥b1∥2 ≤ min
i∈J1,dK

2(i−1)/2∥b∗i ∥2

≤ 2(d−1)/2 min
i∈J1,dK

∥b∗i ∥2

≤ 2(d−1)/2λ1(L((bi)i∈J1,dK)),

where the last inequality stems from Lemma 2.12.

If the Lovàsz condition is not satisfied, we can certainly make progress in the reduction by
swapping bi and bi+1. This leads to the following formulation for the LLL algorithm, which we

40 Go to Contents !

BIBLIOGRAPHY

now present in Algorithm 2.4.

Algorithm 2.4: LLL
Input: Lattice basis (bi)i∈J1,dK

1. (b∗i)i∈J1,dK = GSO((bi)i∈J1,dK) ▷ Algorithm 2.1
2. (bi)i∈J1,dK = SizeReduce((bi)i∈J1,dK) ▷ Algorithm 2.3

3. if there exists i ∈ J1, d− 1K such that 3
4

∥∥b∗i ∥∥22 ≤∥∥∥∥ ⟨bi+1,b
∗
i ⟩

∥b∗
i ∥22

b∗i + b∗i+1

∥∥∥∥2
2

then

(a) (bi,bi+1)← (bi+1,bi)
(b) Go to step 1.

Output: LLL-reduced basis (bi)i∈J1,dK

Theorem 2.5 (LLL Analysis)

The LLL algorithm from Algorithm 2.4 terminates in a polynomial number of steps and works
with numbers whose bit-size is polynomial in the size of the input basis.

Nguyen and Stehlé proposed in 2009 [NS09] a variant of LLL which has a complexity of

O(d4+ε log∥B∥max (d+ log∥B∥max)),

where ∥B∥max = maxi∈J1,kK,j∈J1,dK
∣∣bi,j∣∣ is the max-norm of B. Regardless, it is clear that if the

algorithm terminates, the output basis is LLL-reduced. If we do not concern ourselves with the
size of the numbers we work with, we can show that we perform a polynomial number of swaps
with the same argument as that of Gauss-Lagrange: the product of the ∥bi∥22 decreases with each
swap by a constant factor (3/4), and we cannot go below the volume of the lattice.

Bibliography
[Ban93] W. Banaszczyk. New Bounds in Some Transference Theorems in the Geometry of Num-

bers. Math. Ann., 1993.

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for Hard Lattices and New
Cryptographic Constructions. In STOC, 2008.

[LJL82] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring Polynomials with Rational
Coefficients. Math. Ann., 1982.

[NS09] P. Q. Nguyen and D. Stehlé. An LLL algorithm with quadratic complexity. SIAM J.
Comput., 2009.

! Go to Contents 41

3. HARD PROBLEMS ON LATTICES

3

Hard Problems on Lattices

The reason why lattices are so attractive from an algorithmic standpoint is because they offer a
variety of mathematical problems that are computationally hard to solve. This makes it a very
interesting research area in cryptology on three levels: (1) cryptanalysis which aims at finding
better algorithms to solve such problems efficiently, (2) cryptography which aims at harnessing
the hardness of such problems to construct secure primitives, and (3) mathematics and complexity
theory which aims at theoretically proving a hierarchy among these problems and prove their
hardness mathematically. In this chapter, we present the mathematical problems that are at the
heart of lattice-based cryptography. We also take a sneak peek at their proven hardness. It is
difficult to be exhaustive as there are many variants of these problems, and brand new problems
altogether. We thus only give what we deem important to have a good grasp and comprehension
of the stakes in lattice-based cryptography foundations.

Contents
3.1 Complexity Classes . 42

3.2 Shortest and Closest Vector Problems 43

3.2.1 Shortest Vector Problem and Variants 43

3.2.2 Closest Vector Problem and Variants . 46

3.3 Hardness of SVP and CVP . 47

3.3.1 NP-Completeness of dCVP . 47

3.3.2 Equivalence of CVP and dCVP . 49

3.3.3 Reduction from Approx-GapSVP to Approx-GapCVP 51

3.3.4 Hardness of Approx-GapCVP . 51

3.3.5 Some Lattice Reduction Solvers . 52

3.1 Complexity Classes
Before diving into defining the lattice problems and their hardness, we need to make a quick
reminder of complexity theory and complexity classes. We have defined in Section 1.2.1 what we
mean by a polynomial-time algorithm. This concept is rooted in defining the complexity classes
that we consider in cryptography.

First of all, mathematical problems are mostly divided into two families, namely search problems
and decision problems. Search problems or computational problems essentially ask to compute a
concrete solution of an instance of the problem, while decision problems ask to decide between two
or more choices.

Example 3.1 (Diffie Hellman)

We take the example of the Diffie Hellman problem. We can define a search problem as
follows.

42 Go to Contents !

3.2. SHORTEST AND CLOSEST VECTOR PROBLEMS

Definition 3.1 (Computational Diffie Hellman)

Given a cyclic group G of order p and generator g, the Computational Diffie Hellman
problem CDHG,g,p is as follows. Given (gx, gy) for x, y ←↩ U(Zp), compute gxy.

Generally, for a problem which has both a search and a decision variant, the search variant
is usually at least as hard as the decision variant. It is the case for CDHG,g,p and DDHG,g,p.
To prove that, we give a reduction (Definition 1.22) from DDHG,g,p to CDHG,g,p. Assume we
have an oracle O that solves CDHG,g,p. Given an instance (gx, gy, gz) of DDHG,g,p, we call
O(gx, gy) and get gxy. We can then compare gxy to gz. If they match it means that z = xy
and otherwise z is chosen uniformly.

We now give the main complexity classes for decision problems. They are used to categorize
the different decision problems, but without necessarily proving a hierarchy among each class.

Definition 3.2 (Complexity Classes)

Decision problems may fall in one or several of the following classes.

• Class P. This class is composed of all the decision problems that can be solved by a
polynomial-time algorithm. It is also called the polynomial class.

• Class NP. This class is composed of all the decision problems that have a polynomial-
time verifier, meaning that given a candidate solution, it is possible to verify in
polynomial-time that it is indeed a solution. It is also called the class of non-
deterministic polynomial-time problems.

• Class coNP. This class is the complementary class of NP, meaning it is composed of all
the decision problems for which a proof verifiable in polynomial-time can prove that a
candidate solution is not a valid solution.

• Class NP-hard. This class is composed of all the decision problems that are at least as
hard as all NP problems.

• Class NP-complete. This class is composed of all the decision problems that are both
in NP and NP-hard.

To show that a problem P is in NP-hard, we prove a reduction from a known problem in NP-hard
to P . For example, we can consider the problems SAT, 3-SAT, Knapsack, Traveling Salesman,
etc. The first NP-hard problem is the SAT problem. The theorem of Cook shows that SAT is
the hardest problem of NP. Note that as a result SAT is in NP-complete. We naturally have the
following hierarchy of classes.

P ⊆ NP NP-complete ⊆ NP NP-complete ⊆ NP-hard.

Since most of the problems we consider in cryptography are in NP, if the converse inclusion NP ⊆ P
(meaning P = NP), it would mean that every cryptographic construction could be broken in
polynomial-time. This would break the hierarchy of the complexity classes. Similarly, if there
exists a problem in coNP ∩ NP-hard, it would entail NP ⊆ coNP which would also break the
polynomial hierarchy.

3.2 Shortest and Closest Vector Problems
We now define the two main problems known as the Shortest Vector Problem and Closest Vector
Problem. We also define their variants which are the ones we consider in lattice-based cryptography.

3.2.1 Shortest Vector Problem and Variants
In Chapter 2, we presented lattice reduction techniques (Section 2.4) which aim at reducing the
size of the given lattice basis. These algorithm are actually used in cryptanalysis in order to solve
the shortest vector problem.

! Go to Contents 43

3. HARD PROBLEMS ON LATTICES

Exact Shortest Vector Problem

The shortest vector problem asks to find the shortest non-zero vector of a given lattice. Recalling
the definitions introduced in Section 2.2, it means finding a vector x such that ∥x∥p = λp1(L). It
also offers a decision problem which we here state.

Definition 3.3 (Shortest Vector Problem)

Let k, d be two positive integers, and p in N∗ ∪ {∞}.

• Search Variant: The Shortest Vector Problem SVPp
k,d asks to find v ∈ L such that

∥v∥p = λp1(L) given the lattice L of dimension k and rank d.

• Decision Variant: The Decision Shortest Vector Problem dSVPp
k,d asks to decide

whether λp1(L) ≤ r (YES) or not, given the lattice L of dimension k and rank d,
and a real r ∈ R.

λ1(L) λ1(L)

r

YES

λ1(L)

r

NO

Figure 3.1: Search and decision versions of the Shortest Vector Problem. The left picture depicts
SVP and a solution vector in green. The middle picture is a YES instance of dSVP, while the
right picture is a NO instance.

Most often the lattice is full-rank, i.e., k = d, and the dimension is clear from the context, so we
omit the subscripts k and d and simply write SVPp and dSVPp. Additionally, when p = 2, we omit
the superscript as well. Note that an instance of SVPp

k,d is a lattice. To be used algorithmically,
we must describe it by a basis B ∈ Rk×d. However, using bases with real coefficients may cause
problems to represent it in computers. As a result, we may limit ourselves to rational bases
B ∈ Qk×d or even integer bases.

Shortest Independent Vectors Problem

The SVP problem only focuses on the first minimum of a lattice. We could however generalize
the problem and ask to find the shortest linearly independent lattice vectors. Although we could
define the problem with respect to the i-th minimum for any i in J1, dK, the formulation we use in
cryptography is only for i = d.

Definition 3.4 (Shortest Independent Vectors Problem)

Let k, d be two positive integers, and p in N∗ ∪ {∞}. The Shortest Independent Vectors
Problem SIVPp

k,d asks to find d linearly independent vectors v1, . . . ,vd in L such that
maxi∈J1,dK∥vi∥p = λpd(L), given the lattice L of dimension k and rank d.

Approximate Variants of SVP

These two problems are a little too rigid, and are actually proven hard. It makes them impractical
in large dimensions. In cryptography, we consider approximate versions of the problems which
relax a little bit the problem to be practical and hard at the same time. Instead of finding the

44 Go to Contents !

3.2. SHORTEST AND CLOSEST VECTOR PROBLEMS

λ2(L)

Figure 3.2: The Shortest Independent Vectors Problem. It depicts SIVP and a solution in green.

shortest vector, we ask for a vector whose norm is a small factor of the first minimum, for factor
γ ≥ 1 called the approximation factor.

Definition 3.5 (Approximate Shortest Vector Problem)

Let k, d be two positive integers, and p in N∗ ∪ {∞}. Let γ ≥ 1 be a real approximation
factor.

• Search Variant: The Approximate Shortest Vector Problem SVPp
k,d,γ asks to find v ∈ L

such that ∥v∥p ≤ γλ
p
1(L) given the lattice L of dimension k and rank d.

• Decision Variant: The Gap Shortest Vector Problem GapSVPp
k,d,γ asks to decide

whether λp1(L) ≤ r (YES) or if λp1(L) ≥ γr (NO), given the lattice L of dimension
k and rank d, and a real r ∈ R.

Notice that there is a difference in the decision variant. There is a gap between r and γr in
which we accept either answer. So if the lattice L verifies λp1(L) ∈ (r, γr), the problem can be
answered by either YES or NO. This never happens in practice. We always see GapSVPp

γ promise
problem, which means we are always in one of the two situations but not in the gap. When γ = 1,
this coincides with SVP and dSVP. But we can see that the larger γ, the easier it gets as there
are more solution vectors.

λ1(L)

γλ1(L)

λ1(L)

r

rγ

YES

λ1(L)

rrγ

NO

Figure 3.3: Search and decision versions of the Approximate Shortest Vector Problem. The left
picture depicts SVPγ for γ = 2 and a solution vector in green. The middle picture is a YES
instance of GapSVPγ , while the right picture is a NO instance.

We can also define an approximate version of the Shortest Independent Vectors Problem.

Definition 3.6 (Approximate Shortest Independent Vectors Problem)

Let k, d be two positive integers, and p in N∗ ∪ {∞}. Let γ ≥ 1 be a real approximation
factor. The Approximate Shortest Independent Vectors Problem SIVPp

k,d,γ asks to find d

linearly independent vectors v1, . . . ,vd in L such that maxi∈J1,dK∥vi∥p ≤ γλpd(L), given the

! Go to Contents 45

3. HARD PROBLEMS ON LATTICES

lattice L of dimension k and rank d.

λ2(L)

γλ2(L)

Figure 3.4: The Approximate Shortest Independent Vectors Problem. It depicts SIVPγ for γ = 2
and a solution in green.

The solution highlighted in green is much bigger. In particular, this solution does not form a
basis of the lattice. We can verify it for example by seeing that the fundamental parallelepiped it
describes has a much bigger volume. Regardless, the SIVP and SIVPγ problems do not ask for a
basis of the lattice but for linearly independent lattice vectors, which is the case here. Knowing a
set of linearly independent lattice vectors can be used to derive a basis from it that is smaller (or
of the same length) than these vectors. But the difference is fundamental.

3.2.2 Closest Vector Problem and Variants
The Shortest Vector Problem essentially asks to find lattice points that are close to the origin.
Although this is already a daunting task in high dimensions and given long and highly unorthogonal
bases, another scenario often arises in lattice-based cryptography. In particular, we often have a
vector in the ambient space and need to decode it to the closest lattice point. This constitutes
another major lattice problem which can be used in cryptography.

Exact Closest Vector Problem

As described, the closest vector problem asks to find a lattice vector that is closest to a target
in the ambient space. It also comes with a decision variant. For that, we recall the definition of
a vector to a set in a normed space with respect to the ℓp norm. For a positive integer k, a set
S ⊆ Rk and a target t ∈ Rk, we define the distance between t and S with respect the ∥·∥p for
p ∈ N∗ ∪ {∞} as

distp(t, S) = min
s∈S
∥t− s∥p .

Definition 3.7 (Closest Vector Problem)

Let k, d be two positive integers, and p in N∗ ∪ {∞}.

• Search Variant: The Closest Vector Problem CVPp
k,d asks to find v ∈ L such that

∥v − t∥p = distp(t,L) given the lattice L of dimension k and rank d, and a target
t ∈ Rk.

• Decision Variant: The Decision Closest Vector Problem dCVPp
k,d asks to decide whether

distp(t,L) ≤ r (YES) or not, given the lattice L of dimension k and rank d, a target
t ∈ Rk, and a real r ∈ R.

In situations where we need such decoding, we expect to uniquely recover the lattice point that
was used during encoding. The encoding would start from a lattice vector x ∈ L, choose a small
shift e ∈ Rk and output the encoded lattice point as the target t = x + e. When, decoding, we
expect to recover x. However, consider the pathological edge case where e =

λp
1(L)
2 x∗ where x∗

is a shortest non-zero vector of L. Then, geometrically, t would be the middle of the ℓp segment
between x and x+ x∗. The decoding would therefore decode either as x or x+ x∗ with the same

46 Go to Contents !

3.3. HARDNESS OF SVP AND CVP

t t
r

YES

t
r

NO

Figure 3.5: Search and decision versions of the Closest Vector Problem. The left picture depicts
CVP and a solution vector in green. The middle picture is a YES instance of dCVP, while the
right picture is a NO instance.

probability. To avoid such edge cases, we define a more practical variant of the closest vector
problem called Bounded Distance Decoding problem. It is defined exactly as CVP but with the
promise that the lattice point closest to the target is within a given distance δ. In particular, if
δ < λp1(L)/2, there is only one lattice point that the target can be decoded to.

Definition 3.8 (Bounded Distance Decoding)

Let k, d be two positive integers, and p in N∗∪{∞}. The Bounded Distance Decoding problem
BDDp

k,d asks to find v ∈ L such that ∥v − t∥p = distp(t,L) given the lattice L of dimension
k and rank d, a target t ∈ Rk, and a bound δ > 0 such that distp(t,L) ≤ δ.

Approximate Variants of CVP

We can once again relax the closest vector problem and its variants by accepting solutions within
an approximation factor γ ≥ 1. The decision variant also gives rise to a promise gap problem,
similarly to GapSVP.

Definition 3.9 (Approximate Closest Vector Problem)

Let k, d be two positive integers, and p in N∗ ∪ {∞}. Let γ ≥ 1 be a real approximation
factor.

• Search Variant: The Approximate Closest Vector Problem CVPp
k,d,γ asks to find v ∈ L

such that ∥v − t∥p ≤ γdistp(t,L) given the lattice L of dimension k and rank d, and a
target t ∈ Rk.

• Decision Variant: The Gap Closest Vector Problem GapCVPp
k,d,γ asks to decide

whether distp(, t,L) ≤ r (YES) or if distp(t,L) ≥ γr (NO), given the lattice L of
dimension k and rank d, a target t ∈ Rk, and a real r ∈ R.

3.3 Hardness of SVP and CVP
Now that we have presented the main lattice problems, we need to assess if they are a good fit for
cryptography. In particular, they need to be hard for a notion of hardness that is either proven
or heuristic. In this course, we present the basic results and a reductions that start classifying
the different problems. We first prove that dCVP is in NP-complete, that CVP and dCVP are
equivalent, and that there exists a reduction from GapSVPγ to GapCVPγ . We then give the
known hardness results for GapCVPγ .

3.3.1 NP-Completeness of dCVP
As explained in Section 3.1, proving that a problem is in NP-complete means proving is in NP and
that it is NP-hard. For the latter, we start from a problem that is known to be in NP-hard and

! Go to Contents 47

3. HARD PROBLEMS ON LATTICES

t

γdist(t,L)

t
r

γr

YES

tr
γr

NO

Figure 3.6: Search and decision versions of the Approximate Closest Vector Problem. The left
picture depicts CVPγ for γ = 2 and a solution vector in green. The middle picture is a YES
instance of GapCVPγ , while the right picture is a NO instance.

prove a reduction from that problem to dCVP. We then have to prove that dCVP is NP. To do
so, we use the subset sum problem, which we now recall.

Definition 3.10 (Subset Sum Problem)

Let d be a positive integer. The Subset Sum Problem SSPd is defined as follows. Given d+1
integers a1, . . . , ad, S, decide if there exists A ⊆ {1, . . . , d} such that

∑
i∈A ai = S.

We have the following theorem, proven in e.g. [CLRS09], states that the subset sum problem is
NP-complete.

Theorem 3.1 (NP-Completeness of SSP)

The Subset Sum Problem SSP is in NP-complete.

We can now state our theorem of interest.

Theorem 3.2 (NP-Completeness of dCVP)

The decisional Closest Vector Problem dCVP is in NP-complete.

Proof (Theorem 3.2). Let us first prove that dCVP is in NP. Let (L, t, r) be an instance
of dCVPp

k,d such that distp(t,L) ≤ r. Let x be in L such that ∥x− t∥p ≤ r. Then x is the
desired witness. Indeed, given this candidate witness x, we can verify that x belongs to L
and that ∥x− t∥p ≤ r in time polynomial in k, d. The latter norm condition implies that
distp(t,L) ≤ r. Hence dCVPp

k,d ∈ NP.
Now we provide a reduction from SSPd to dCVPp

d+1,d. For that, we assume that we have
access to an oracle O that solves dCVPp

d+1,d. Let (a1, . . . , ad, S) be an instance of SSPd. We
construct a basis B ∈ Zd+1×d, a target t ∈ Zd+1 and a real r as follows.

B =

a1 . . . ad

2Id

 , and t =

S
1
...
1

 , and r = p
√
d.

We define L = L(B). It is clearly a lattice of dimension d + 1 and rank d. We then return
O(L, t, r) as the solution to SSPp

d+1,d.
Let us now analyze the reduction, that is the solution is correct, and the reduction is

polynomial-time. Constructing the dCVP instance and sending it to the oracle is clearly
polynomial-time. Now assume that the instance of SSP is a YES instance. As such, there
exists A ⊆ J1, dK such that

∑
i∈A ai = S. We then denote by x = [1A(i)]i∈J1,dK ∈ {0, 1}d,

48 Go to Contents !

3.3. HARDNESS OF SVP AND CVP

where 1A is the indicator function of A. It then follows that y = Bx = [S, y2, . . . , yd+1]
T ,

where yi ∈ {0, 2} for all i ∈ J2, d + 1K. Hence, y − t = [0,±1, . . . ,±1]T which has ℓp-norm
p
√
d = r. So we have found a lattice point y which is within ℓp-distance r of t. As such,

distp(t,L) ≤ r. The answer of O is thus YES as expected. Conversely, assume that O
returns YES. Then, there exists y ∈ L such that ∥y − t∥p ≤

p
√
d. By construction, the last d

coordinates of y must be even, and in turn the last d coordinates of y− t must be odd. This
shows that ∥y − t∥p ≥

p
√
d. We thus obtain that ∥y − t∥p = r, which can only happen if the

first coordinate is 0, and the others are ±1. We define A = {i ∈ J1, dK : [y − t]i = 1}. It thus
means that for x = [1A(i)]i∈J1,dK, Bx = y and therefore that

∑
i∈A ai = S. So the answer to

SSPd should indeed be YES.

3.3.2 Equivalence of CVP and dCVP

We now show that the computational and decisional versions of CVP are actually equivalent.
To prove equivalence, we first show in Lemma 3.1 a reduction from dCVP to CVP, and then in
Lemma 3.2 the opposite reduction from CVP to dCVP.

Lemma 3.1 (Decision-to-Search CVP)

Let k, d be two positive integers and p in N∗∪{∞}. There is a probabilistic polynomial-time
reduction from dCVPp

k,d to CVPp
k,d.

Proof (Lemma 3.1). Assume that there exists a PPT adversary A which can solve CVPp
k,d

with advantage ε. We construct a PPT adversary B solving dCVPp
k,d with advantage ε. The

algorithm B works as follows. Given an instance (L, t, r) of dCVPp
k,d, it sends (L, t) to A and

eventually receives v ∈ L such that ∥v − t∥p = distp(t,L) or ⊥. If it received ⊥, B outputs
⊥. It then computes u =∥v − t∥p and output YES if u ≤ r and NO otherwise.

The algorithm B clearly runs in polynomial time as A runs in polynomial-time. We now an-
alyze the advantage of B. First, by assumption, we have P[B(L, t, r) =⊥] = ε. The advantage
of B is defined as

Adv[B] =
∣∣P[B(L, t, r) = YES|distp(t,L) ≤ r]− P[B(L, t, r) = YES|distp(t,L) > r]

∣∣ .
For the first probability, we have

P[B(L, t, r) = YES|distp(t,L) ≤ r]
= P[A(L, t) =⊥] · P[B(L, t, r) = YES|distp(t,L) ≤ r ∧ A(L, t) =⊥]
+ P[A(L, t) ̸=⊥] · P[B(L, t, r) = YES|distp(t,L) ≤ r ∧ A(L, t) ̸=⊥]

= P[A(L, t) ̸=⊥] · P[B(L, t, r) = YES|distp(t,L) ≤ r ∧ A(L, t) ̸=⊥]
= εP[

∥∥A(L, t)− t
∥∥
p
≤ r|distp(t,L) ≤ r]

= εP[distp(t,L) ≤ r|distp(t,L) ≤ r]
= ε.

For the second, we have

P[B(L, t, r) = YES|distp(t,L) > r]

= P[A(L, t) =⊥] · P[B(L, t, r) = YES|distp(t,L) > r ∧ A(L, t) =⊥]
+ P[A(L, t) ̸=⊥] · P[B(L, t, r) = YES|distp(t,L) > r ∧ A(L, t) ̸=⊥]

= P[A(L, t) ̸=⊥] · P[B(L, t, r) = YES|distp(t,L) > r ∧ A(L, t) ̸=⊥]
= εP[

∥∥A(L, t)− t
∥∥
p
≤ r|distp(t,L) > r]

= εP[distp(t,L) ≤ r|distp(t,L) > r]

= 0.

As a result, Adv[B] = ε.

! Go to Contents 49

3. HARD PROBLEMS ON LATTICES

We now show the converse reduction which is a little bit more subtle. We have to use the
decision oracle in order to construct a sparse lattice while keeping track of how the closest vector
and target are modified. Once this sparse lattice is constructed, we leverage its sparsity and use
an efficient solver of CVP in sparse lattices.

Lemma 3.2 (Search-to-Decision CVP)

Let k, d be two positive integers. There is a probabilistic polynomial-time reduction from
CVP2

k,d to dCVP2
k,d for integer lattices.

Proof (Lemma 3.2). Assume that there exists an oracle can solve dCVP2
k,d. We construct a

PPT adversary B solving CVP2
k,d. The algorithm B works as follows. It is given an integer

lattice L ⊂ Zk and t ∈ Rk. We let B = [b1| . . . |bd] ∈ Zk×d be a basis of L.

Estimating dist(t,L). The first step is to find the distance r from t to the lattice L. For
that we proceed by binary search as follows. There exists an (unknown) x in Zn verifying
∥Bx− t∥2 = r. Then r2 = ∥Bx− t∥22 ∈ Z. We denote R =

∑
i∈J1,nK∥bi∥2 /2. First, notice

that 0 < r ≤ R. Indeed, if r = 0 it means t ∈ L(B) which can be verified efficiently. On the
other hand, since Bx is the lattice point closest to t, it means that Bx − t is in P±(B) and
can be written as Bx − t =

∑
i∈J1,nK αibi with αi ∈ [−1/2, 1/2). By the triangle inequality,

∥Bx− t∥2 ≤
∑

i∈J1,nK∥bi∥2 /2 = R.

Then, by performing a binary search on {1, . . . , R2} we can find r2 and thus r in p log2R
steps. At each step, the search set is {a, . . . , b}. Call the dCVP oracle on (B, t, (b − a)/2).
If the oracle answers YES, then update the search set to {a, . . . , ⌊(b − a)/2⌋} and otherwise
update it to {⌈(b− a)/2⌉, . . . , b}.

Iterative procedure. We then consider the following iterative procedure.

Input: (B′, t′) such that L(B′) ⊆ L(B) and t′ = t+v with v ∈ L(B) and dist(t′,L(B′)) = r

Output: (B′′, t′′)

1. B′′ ← [2b′1|b′2| . . . |b′d].
2. b← OdCVP(B′′, t′, r) [b = 1 if dist(t′,L(B′′)) ≤ r and 0 otherwise]

3. Output (B′′, t′′ = t′ − (1− b)b′1).

The output (B′′, t′′) verifies the three following invariants (1) L(B′′) ⊆ L(B), (2) t′′ = t+ v
for some v in L(B) and (3) r = dist(t′′,L(B′′)). Indeed, we have the following.

(1) We have B′′ = B′ + [b′1|0| . . . |0] so each b′′i is in Z · b′i ⊂ L(B′) ⊆ L(B). Therefore,
L(B′′) ⊆ L(B).

(2) If the return value is t′′ = t′, then t′′ = t + v with v ∈ L(B) by construction of the
input. If t′′ = t′ − b′1 then t′′ = t+ (v − b′1) and v − b′1 ∈ L(B) because L(B′) ⊆ L(B).

(3) If t′′ = t′, then dist(t′′,L(B′′)) = dist(t′,L(B′′)) ≤ r (returned by the oracle). Since
L(B′′) ⊆ L(B′), we have dist(v,L(B′)) ≤ dist(v,L(B′′)) for all v. Therefore, it holds
dist(t′′,L(B′′)) ≥ dist(t′′,L(B′)) = dist(t′,L(B′)) = r, and as a result dist(t′′,L(B′′)) = r.

For the case t′′ = t′ − b′1, we first notice that L(B′) = L(B′′) ∪ (L(B′′) + b′1). L(B′′)
represents the vectors which have an even coordinate along b′1 and (L(B′′) + b′1) those with
an odd coordinate along b′1. We thus trivially have this set equality. If t′′ = t′−b′1, since the
oracle returns b = 0, we get that dist(t′,L(B′′)) > r. Since dist(t′,L(B′)) = r, we necessarily
have dist(t′,L(B′′) + b′1) = r, which yields dist(t′′,L(B′′)) = r.

B run this procedure κ = d+log2 r times, and does the same for the d−1 vectors of the basis
(defining B′′ = [b′1|2b′2|b′3| . . . |b′d] and so on). After these dκ runs of the procedure, we get
(B∗, t∗) with B∗ = [2κb1| . . . |2κbd], t∗ = t+ v for some v in L(B), and dist(t∗,L(B∗)) = r.

The coordinates of every vector of L(B∗) are multiples of 2κ so the distance between two
distinct vectors is at least 2κ. Hence, the second closest vector to t∗ is at a distance r′ ≥
2κ − r = 2d2log2 r − r = r(2d − 1). Using Babai’s algorithm, we are able to find in polynomial
time the closest vector x∗ ∈ L(B∗) to t∗ within an approximation factor γ = 2d/2 < 2d − 1.
The only vector of L(B∗) at distance at most rγ of t∗ is the closest vector x∗. Yet, since

50 Go to Contents !

3.3. HARDNESS OF SVP AND CVP

dist(t∗,L(B∗)) = r, we have ∥x∗ − t∗∥2 = r. Moreover, t∗ = t + v for some v ∈ L(B). We
thus define x = x∗−v. Since v ∈ L(B) and that x∗ ∈ L(B∗) ⊆ L(B), we indeed get x ∈ L(B).
By construction, ∥x− t∥2 = ∥x∗ − t∗∥2 = r. So x is indeed a desired solution of the CVPk,d

instance.

3.3.3 Reduction from Approx-GapSVP to Approx-GapCVP
We now look at the hierarchy between GapSVPγ and GapCVPγ . More precisely, we show that
GapCVPγ is at least as hard as GapSVPγ . This seems rather intuitive as CVP essentially asks to
the shortest lattice vector with origin t, whereas SVP asks to find the shortest lattice vector with
origin 0. Naturally, one would want to call the CVP oracle with target 0. But since 0 is a lattice
point, it would always return 0, which does not yield a solution for SVP.

The idea is thus to make a hole in the lattice around the target of CVP so that even if the
target is on the lattice, the CVP oracle will not return it as a solution. However, making such a
hole does not result in a lattice. So instead, we need to remove a subset of lattice points to preserve
a lattice structure.

Theorem 3.3 (GapSVPγ to GapCVPγ)

Let k, d be two positive integers, p in N∗ ∪ {∞}, and γ ≥ 1. There is a probabilistic
polynomial-time reduction from GapSVPp

k,d,γ to GapCVPp
k,d,γ .

Proof (Theorem 3.3). Assume we have access to an oracle for GapCVPp
k,d,γ . We construct

the solver for GapSVPp
k,d,γ as follows. On input (L, r) an instance of GapSVPp

k,d,γ , we denote
by B = [bi]i∈J1,dK ∈ Rk×d a basis of L. For i ranging from 1 to n, we define:

Bi = [b1| . . . |bi−1|2bi|bi+1| . . . |bn],

and the instance i for GapCVPp
k,d,γ is (Bi,bi, r). The algorithm calls the oracle for each

instance. If one of the instance yields a YES, then the algorithm returns YES as answer to
the instance (L, r), otherwise it returns NO.

The algorithm makes d calls to the GapCVPp
k,d,γ oracle and is therefore polynomial-time if

the oracle also respond in polynomial time. We now have to prove its correctness.

First, suppose that (L, r) is a NO instance, which means λp1(L) > γr. Let i be an interme-
diate instance for GapCVPp

k,d,γ . Let x = k1b1 + . . . + 2kibi + . . . knbn be in L(Bi). Then
x − bi has an odd coefficient along bi which means that x − bi ̸= 0. Yet, x − bi ∈ L. So
∥x− bi∥p ≥ λp1(L) > γr. By minimizing over x, we get that distp(bi,L(Bi)) > γr so i is a
NO instance of GapCVPp

k,d,γ .

Conversely, suppose (L, r) to be a YES instance, meaning λp1(L) ≤ r. Define x =∑
i∈J1,nK kibi to be the shortest non-zero vector of L. Then there is i such that ki is odd (oth-

erwise x/2 is still in the lattice and is stricly shorter). Now define u = ki+1
2 2bi +

∑
j ̸=i kjbj .

Then u is in L(Bi) and u− bi = x so distp(bi,L(Bi)) ≤∥u− bi∥p =∥x∥p = λp1(L) ≤ r. So i
is a YES instance of GapCVPp

k,d,γ .

We can see that this reduction preserves the dimension k, the rank d and the approximation
factor γ of the problems. It is therefore tight in terms of parameters, but it still requires d calls
to the GapCVPp

k,d,γ oracle. Additionally, we notice that the reduction goes through for all γ ≥ 1,
which means that it yields a reduction from dSVP to dCVP. It turns out that the converse
reduction is much more difficult to establish and the dimension and rank of the lattice change
throughout the reduction.

3.3.4 Hardness of Approx-GapCVP
We have seen that GapCVPγ is no easier than GapSVPγ , and that dCVP is in NP-complete. But
how about the hardness of GapCVPγ for γ > 1? In 2003, Dinur, Kindler, Raz and Safra [DKRS03]
extended the NP-completeness to all γ that are “almost-polynomial”. They actually proved it was
in NP-hard, but since GapCVPγ is also in NP for all γ, it proved NP-completeness.

! Go to Contents 51

3. HARD PROBLEMS ON LATTICES

Theorem 3.4 (NP-Completeness of GapCVPγ [DKRS03])

Let k, d be two positive integers. Let γ ≤ dO(1/ log log d). Then, GapCVP2
k,d,γ is in

NP-complete.

Later, in 2003, Aharonov and Regev [AR04] proved that it was in NP ∩ coNP for γ =
√
d.

Theorem 3.5 (coNP of GapCVPγ [AR04])

Let k, d be two positive integers. Then, GapCVP2
k,d,
√
d

is in NP ∩ coNP.

It is very unlikely that a problem in NP∩ coNP would also be in NP-complete. If this happened, it
would imply a collapse of the polynomial hierarchy. Other problems from cryptography are known
to be in NP ∩ coNP like GapSVPk,d,d or the factorization problem.

Theorem 3.6 (coNP of GapSVPd)

Let k, d be two positive integers. Then, GapSVP2
k,d,d is in NP ∩ coNP.

Proof (Theorem 3.6). We recall that a decision problem is in coNP if only NO instances can
be verified in polynomial time, i.e., for NO instances there exists a witness that can be verified
efficiently, but for YES instances, no witness can be verified.

Let (L, r) be a NO instance for GapSVP2
k,d,d, meaning that λ1(L) > dr. From the Ba-

naszczyk theorem (Theorem 2.4), we get that λd(L∗) < 1
r . Hence, the witness would be d

linearly independent vectors of L∗ of length less than 1
r .

Given the witness, it is easy to verify that these vectors belong to L∗, that they are linearly
independent, and that they have norm less than 1

r . This allows us to verify that λd(L∗) < 1
r .

We then know that (L, r) is a NO instance because if not we would have λ1(L) ≤ r and thus
λ1(L)λd(L∗) < 1, which would contradict the Banaszczyk theorem.

Since all these verifications can be done in poly(d), then GapSVP2
k,d,d is in coNP. Since it

is also in NP, it gives the result.

The main conjecture that is done in lattice-based cryptography is therefore that GapSVPk,d,γ

and GapCVPk,d,γ and other common variants are hard to solve even for γ = poly(d).

Conjecture 3.1 (Lattice Cryptography Conjecture)

Let k, d be two positive integers. We assume that common lattice problems in dimension k
and rank d are hard to solve within γ = poly(d) approximation factors.

3.3.5 Some Lattice Reduction Solvers
We have seen certain lattice reduction techniques in Section 2.4 that may be used to solve these
lattice problems. There are many other lattice reduction algorithms, but we do not cover them in
this course. Nevertheless, we now give the performance of the most well known to see their impact
on the hardness of lattice problems, and whether they endanger Conjecture 3.1.

LLL

We have seen that the LLL algorithm (Algorithm 2.4) returns an LLL-reduced basis by Theorem 2.5.
By Lemma 2.15, it thus holds that the first vector of said basis has ℓ2-norm smaller than γλ1(L)
where γ = 2(d−1)/2. This means that LLL can solve SVP2

k,d,γ in polynomial time for γ ≥ 2(d−1)/2.
It turns out that it can be adapted to solve the exact versions SVP and CVP, but it then

requires a 2O(d2) time complexity, and a polynomial memory complexity.

52 Go to Contents !

BIBLIOGRAPHY

Kannan

In 1983, Kannan [Kan83] improves on this variant to solve exact lattice problems with a reduced
complexity. It shows that it is possible to solve SVP and CVP with polynomial memory complexity
and 2O(d log d) time complexity.

Ajtai, Kumar, Sivakumar

Later on, Ajtai, Kumar and Sivakumar [AKS01] proposed a probabilistic sieving algorithm allowing
to reduce the time complexity at the expense of the memory complexity. In particular, their
algorithm has a complexity of 2O(d) in both time and memory.

Micciancio, Voulgaris

Then, in 2010, Micciancio and Voulgaris [MV10] proposed a deterministic CVP solver based on
Voronoi cell computations. It has time complexity 22d and memory complexity 2d which improves
on [AKS01].

Bibliography
[AKS01] M. Ajtai, R. Kumar, and D. Sivakumar. A Sieve Algorithm for the Shortest Lattice

Vector Problem. In STOC, 2001.

[AR04] D. Aharonov and O. Regev. Lattice Problems in NP cap coNP. In FOCS, 2004.

[CLRS09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms,
3rd Edition. MIT Press, 2009.

[DKRS03] I. Dinur, G. Kindler, R. Raz, and S. Safra. Approximating CVP to Within Almost-
Polynomial Factors is NP-Hard. Comb., 2003.

[Kan83] R. Kannan. Improved Algorithms for Integer Programming and Related Lattice Prob-
lems. In STOC, 1983.

[MV10] D. Micciancio and P. Voulgaris. A Deterministic Single Exponential Time Algorithm
for Most Lattice Problems Based on Voronoi Cell Computations. In STOC, 2010.

! Go to Contents 53

Part III

Foundations of Lattice-Based
Cryptography

]

This part presents the necessary tools as well as the fundamental assumptions
underlying lattice-based cryptography.

4

Gaussian Distributions over Lattices

Gaussian probability distributions have very interesting probabilistic and geometric properties,
and they appear everywhere in mathematics. They offer many possibilities in order to randomize
certain processes, and typically instances of problems. Unfortunately, Gaussian distributions are
by nature continuous over Rd which seems incompatible with the discrete aspect of lattices. There
is however a way to discretize Gaussian distributions onto discrete sets such as lattices. The idea
is essentially to take a continuous Gaussian distribution and condition the samples to be lattice
points, thus needing normalization by the Gaussian mass of the lattice itself.

Albeit perfectly valid in theory, for it to be relevant, one needs a way to efficiently sample from
such distributions. However, Gaussian distributions are known to be concentrated around their
center, which means that if one is able to sample from very narrow Gaussian distributions centered
around 0 (or around a target t in the case of CVP), they would be able to solve SVP, CVP and
possibly other variants. As it turns out, sampling a Gaussian on a lattice and the quality of the
samples highly depends on the size of the basis of the lattice that is used. As a result, a good
basis with short and highly orthogonal vectors allows efficient and qualitative sampling, while a
bad basis will result in long samples.

In this chapter, we thus define in all generality the notion of discrete Gaussian distributions,
especially over lattices, and their properties and peculiarities compared to continuous ones. We
then give more details on the results on discrete Gaussian sampling and the quality of the samples
based on the quality of the basis.

We recall that for a finite set S, we denote by |S| its cardinality and by U(S) the discrete
uniform distribution over S. If S is not finite but with bounded volume in a metric space, U(S)
can still be defined as the continuous uniform distribution over S, with probability density function
(Vol S)−11S(·). The action of sampling x ∈ S from a distribution P is denoted by x←↩ P , whereas
the notation x ∼ P means that the random variable x is distributed according to P .

Contents
4.1 Definition of Discrete Gaussians . 55

4.1.1 Continuous Multidimensional Gaussian Distributions 56
4.1.2 Discrete Gaussian Distributions . 56

4.2 Paramètre de Lissage . 56
4.2.1 Fourier Transform and Poisson Summation Formula 57
4.2.2 Regularity and Smoothing Parameter 58

4.3 Properties of Discrete Gaussians . 59
4.3.1 Basic Properties . 59
4.3.2 Gaussian Tail Bounds . 62

4.4 Sampling Gaussians over Lattices . 62
4.4.1 Klein Sampler . 63

4.1 Definition of Discrete Gaussians

! Go to Contents 55

4. GAUSSIAN DISTRIBUTIONS OVER LATTICES

4.1.1 Continuous Multidimensional Gaussian Distributions
We now make reminders on multidimensional Gaussian distributions. For that, we first define
the Gaussian function, parameterized by a Gaussian parameter s > 0 (sometimes called width or
standard deviation) and a center c.

Definition 4.1 (Gaussian Function)

Let d be a positive integer. For a positive real s > 0 and a vector c ∈ Rd, we define the
Gaussian function of center c and width s by

∀x ∈ Rd, ρs,c(x) = exp

(
− π
s2
∥x− c∥22

)
.

By normalizing it, we can then define the continuous multidimensional Gaussian distribution
by its probability density function Ds,c.

Definition 4.2 (ontinuous Gaussian Distribution)

Let d be a positive integer. For a positive real s > 0 and a vector c in Rd, we define
the continuous Gaussian distribution of center c and width s as the probability distribution
whose probability density function is defined by

∀x ∈ Rd, Ds,c(x) =
1

sd
ρs,c(x) =

1

sd
exp

(
− π
s2
∥x− c∥22

)
.

For clarity, when the center is c = 0, we omit it from the subscripts.

4.1.2 Discrete Gaussian Distributions
We can now define discrete Gaussian distributions. Although we use them over lattices or lattice
cosets, it is possible to define them over arbitrary countable sets. To remain as general as possible,
this is the choice we make.

Definition 4.3 (Discrete Gaussian Distribution)

Let d be a positive integer, and S ⊂ Rd be a countable set. Let s > 0 be a positive real and
c a vector in Rd. The discrete Gaussian distribution over S of center c and width s is the
probability distribution whose probability density function is defined by

∀x ∈ S,DS,s,c(x) =
ρs,c(x)

ρs,c(S)
=

exp
(
− π

s2 ∥x− c∥22
)

∑
y∈S

exp
(
− π

s2 ∥y − c∥22
) .

Since lattices are countable sets, we will only focus on discrete Gaussian distributions for which
the support is a lattice L. We note that for all vector a ∈ Rd and lattice L ⊂ Rd, a + L is
also countable. We will thus sometimes consider distributions of the form Da+L,s,c. We depict in
Figure 4.1 the density functions of two discrete Gaussian distributions, one over the lattice Z, and
the second over a lattice of dimension 2.

4.2 Paramètre de Lissage
Although, the density of discrete Gaussian distributions rather look like that of continuous Gaussian
discretized on a lattice, they should not be treated as continuous Gaussian distributions without
care. In particular, a very important result about continuous Gaussians is that the sum of two
independent Gaussian distributions with standard deviation s1 and s2 respectively is a Gaussian
with width

√
s21 + s22. This fact does not hold true for discrete Gaussians, at least not without

additional conditions. In 2004, Micciancio and Regev [MR07] introduced the notion of smoothing
parameter of a lattice in order to capture the standard deviation threshold above which a discrete
Gaussian behaves almost like a continuous one.

56 Go to Contents !

4.2. PARAMÈTRE DE LISSAGE

Figure 4.1: Probability density functions of DZ,s and DZ2,s for s = 5

4.2.1 Fourier Transform and Poisson Summation Formula

Before introducing the smoothing parameter, we make a few reminders of the tools needed to
introduce it. In particular, certain results related to the smoothing parameter resort to the Fourier
transform of the Gaussian function. The geometric properties of Gaussian distributions make them
invariant under the Fourier transform, up to a rescaling of their standard deviation.

Definition 4.4 (Fourier Transform)

Let d, k be a positive integer, and f : Rd −→ Rk a summable function. The Fourier Transform
of the function f is the function f̂ : Rd −→ Ck defined by

∀ω ∈ Rd, f̂(ω) =

∫
Rd

f(x) exp(−i · 2π⟨x , ω⟩)dx.

We recall that a translation of a function results in a phase shift of the Fourier transform, i.e.,
for a summable function f and v ∈ Rd, the function g : x 7→ f(x + v) has Fourier transform
ĝ(·) = f̂(·) exp(2iπ⟨v , ·⟩). As mentioned, the spherical Gaussian function is invariant under the
Fourier transform up to scaling, that is ρ̂s = sdρ1/s. We can generalize it as follows.

Lemma 4.1 (Fourier Transform of Gaussian Function)

Let d be a positive integer, s > 0 and c ∈ Rd. It holds that

∀ω ∈ Rd, ρ̂s,c(ω) = sd · exp(−i · 2π⟨c , ω⟩)ρ1/s(ω).

A very important and usual result in the study of lattices is the Poisson Summation Formula.
It relates the mass of a lattice with respect to a function f , with the volume of its dual and the
frequency mass of its dual.

Theorem 4.1 (Poisson Summation Formula)

Let k be a positive integer and f : Rk −→ C a well-behaved functiona. Let L ⊂ Rk be a
lattice. Then, it holds that

f(L) = Vol L∗ · f̂(L∗) = (Vol L)−1f̂(L∗).
aThe conditions are rather complex and specified in [Ebe02]. All the functions we consider in this course

satisfy those conditions.

! Go to Contents 57

4. GAUSSIAN DISTRIBUTIONS OVER LATTICES

4.2.2 Regularity and Smoothing Parameter

We start by giving the following result of Micciancio and Regev [MR07] which is the natural
starting point for introducing the smoothing parameter.

Lemma 4.2 ([MR07, Lem. 4.1])

Let d be a positive integer. Let s > 0, c in Rd and L ⊂ Rd a full-rank lattice of rank d. We
let B ∈ Rd×d be a basis of L. It then holds that

∆(Ds,c mod P(B), U(P(B))) ≤ 1

2
ρ1/s(L∗ \ {0}),

where P(B) is the fundamental parallelepiped associated to the basis B of the lattice L.

Proof (Lemma 4.2). We let f be the probability density function over P(B) defined by
Ds,c mod P(B). Thence, for all x in P(B), it holds that

f(x) =
1

sd
·
∑
y∈L

ρs,c(x+ y) =
1

sd
ρs,c−x(L).

By the Poisson summation formula of Theorem 4.1, and Lemma 4.1, it yields that

f(x) =
1

Vol (L) · sd
ρ̂s,c−x(L∗)

=
1

Vol (L) · sd
sd
∑
ω∈L∗

exp(−i2π⟨c− x , ω⟩)ρ1/s(ω)

=
1

Vol (L)

1 +
∑

ω∈L∗\{0}

exp(−i2π⟨c− x , ω⟩)ρ1/s(ω)

 .

The density function of U(P(B)) is (Vol P(B))−11P(B) = (Vol L)−11P(B). Hence, we have
the following inequalities.

∆(Ds,c mod P(B), U(P(B))) =
1

2

∫
x∈P(B)

∣∣∣f(x)−Vol (L)−1
∣∣∣ dx

≤ 1

2
Vol (L) · max

x∈P(B)

∣∣∣f(x)−Vol (L)−1
∣∣∣

=
1

2
max

x∈P(B)

∣∣∣∣∣∣
1 +

∑
ω∈L∗\{0}

exp(−i2π⟨c− x , ω⟩)ρ1/s(ω)

− 1

∣∣∣∣∣∣
≤ 1

2
max

x∈P(B)

∑
ω∈L∗\{0}

ρ1/s(ω)

=
1

2
ρ1/s(L∗ \ {0}),

as desired.

Lemma 4.2 then leads to the definition of the smoothing parameter which is essentially the
smallest

√
S such that this statistical distance is bounded by ε/2 for some ε > 0.

Definition 4.5 (Smoothing Parameter of a Lattice)

Let k, d be two positive integers and L ⊂ Rk a lattice of rank d. For any positive real ε, the
smoothing paramater of L with respect to ε is defined by

ηε(L) = min{s > 0 : ρ1/s(L∗) ≤ 1 + ε}.

Byu definition of the smoothing parameter, whenever s ≥ ηε(L), the result of Lemma 4.2

58 Go to Contents !

4.3. PROPERTIES OF DISCRETE GAUSSIANS

yields a statistical distance of at most ε/2. When ε is negligible, it means that the Gaussian
distribution reduced to the fundamental volume of the lattice is indistinguishable from the uniform
distribution over said volume. This is the reason for the appellation smoothing. We will see in the
following sections some properties of discrete Gaussians that are satisfied when the width exceeds
the smoothing parameter. However, it is imperative to be able to evaluate or estimate the value
of said smoothing parameter in order to know how big we need the width to be. Several results
were provided which bound the smoothing parameter by lattice quantities. In general, precisely
estimating the smoothing parameter is difficult, and is still subject to active research today. We
nevertheless give a few bound here, which are sufficient in most cases.

Lemma 4.3 (Smoothing Parameter Bounds)

Let d be a positive integer, ε a positive real, and p be in N∗∪{∞}. Let L ⊂ Rd be a full-rank
lattice of rank d. The following bounds hold

ηε(L) ≤
√

ln(2d(1 + ε−1))

π
· λd(L) ([MR07])

ηε(L) ≥
√

ln(ε−1)

π
· 1

λ1(L∗)
≥
√

ln(ε−1)

π
· λd(L)

d
([Reg05])

ηε(L) ≤
√

ln(2d(1 + ε−1))

π
· 1

λ∞1 (L∗)
≤
√

ln(2d(1 + ε−1))

π
· d1/p

λp1(L∗)
([Pei08])

ηε(L) ≤
√

ln(2d(1 + ε−1))

π
· λGSO(L) ([GPV08])

where λGSO(L) = inf
B basis of L

∥∥GSO(B)
∥∥
∞ = inf

B basis of L
max
1≤i≤d

∥∥GSO(B)ei
∥∥
2
.

4.3 Properties of Discrete Gaussians

We now look at some properties of discrete Gaussian distributions. In particular, we try to replicate
the known results for continuous Gaussian distributions. In this course, we only look at the
sum of two independent discrete Gaussians, the translation of a discrete Gaussian, and finally
concentration bounds of discrete Gaussian samples which are essential for lattice cryptography.

4.3.1 Basic Properties

We start by a very important result which essentially states that when the standard deviation
exceeds the smoothing parameter of the lattice, the Gaussian mass of the lattice does not really
depend on the center.

Lemma 4.4 (Gaussian Mass of Lattice Cosets)

Let d be a positive integer and ε a positive real. Let s > 0, c in Rd and L ⊂ Rd be a lattice
of full rank d. If s ≥ ηε(L), then we have

ρs,c(L) ∈
[
1− ε
1 + ε

, 1

]
ρs(L).

Proof (Lemma 4.4). See TD 1

From this result, we can adapt the result provided in Lemma 4.2 discrete Gaussian distributions
reduced modulo a sublattice. This result is due to [GPV08, Cor. 2.8].

! Go to Contents 59

4. GAUSSIAN DISTRIBUTIONS OVER LATTICES

Lemma 4.5 ([GPV08, Cor. 2.8])

Let d be a positive integer. Let s > 0, c in Rd and L′ ⊆ L ⊂ Rd two lattices of full rank d.
Let ε ∈ (0, 1) and assume s ≥ ηε(L′). We define the distributions P0 = DL,s,c mod L′ and
P1 = U(L mod L′). We then have

∀x ∈ L mod L′,P0(x) ∈
[
1− ε
1 + ε

,
1 + ε

1− ε

]
· P1(x).

In particular, we get ∆(DL,s,c mod L′, U(L mod L′)) ≤ ε/(1− ε).

Proof (Lemma 4.5). Consider the marginal distribution of (z mod L′) where z is drawn
from DL,s,c. Then, for any coest v + L′ of L/L′, the probability that z belongs to v + L′ is
proportional to

ρs,c(v + L′) = ρs,c−v(L′) ∈ Vol (L′)−1sd[1− ε, 1 + ε],

s in the proof of Lemma 4.4. Similarly, we have ρs,c(L) ∈ Vol (L)−1sd[1− ε, 1 + ε] due to the
fact that ηε(L′) ≥ ηε(L). As a result, we have

Pz[z = v mod L′] = ρs,c(v + L′)
ρs,c(L)

∈ Vol (L)
Vol (L′)

·
[
1− ε
1 + ε

,
1 + ε

1− ε

]
=
∣∣L/L′∣∣−1 · [1− ε

1 + ε
,
1 + ε

1− ε

]
,

as claimed. The result on the statistical distance simply consists in using the first claim in
the computation of the statistical distance, which gives

∆(DL,s,c mod L′, U(L mod L′) ≤ max
(
ε/(1− ε), ε/(1 + ε)

)
= ε/(1− ε).

The Poisson summation formula allows for easily bounding the Gaussian mass of a lattice. A
direct application is a lower bound on the min-entropy of a discrete Gaussian random variable. We
recall the definition of min-entropy here.

Definition 4.6 (Min-Entropy)

Let S be a countable set, and x a random variable following a discrete distribution over S.
The min-entropy of x (or of its distribution) is defined by

H∞(x) = − log2 max
x′∈S

P[x = x′].

Lemma 4.6 (Entropy of Discrete Gaussian)

Let d be a positive integer and ε a positive real. Let s > 0, c in Rd and L ⊂ Rd a lattice of
full rank d. If s ≥ ηε(L), it holds that

H∞(DL,s,c) ≥ d log2(s)− log2(Vol (L)) + log2(1− ε).

Proof (Lemma 4.6). First of all, note that for all x in L, ρs,c(x) ≤ 1. It then suffices to
bound the denominator ρs,c(L). In the proof of Lemma 4.4, we have seen that ρs,c(L) ≥
(1− ε)Vol (L)−1sd. We thus obtain that

H∞(DL,√S,c) ≥ log2 ρs,c(L) ≥ d log2(s)− log2(Vol (L)) + log2(1− ε),

as desired.

We now give the expected result that whenever the Gaussian width are sufficiently large with
respect to the smoothing parameter, the sum of two independent discrete Gaussian distributions
is statistically close to a discrete Gaussian distribution.

60 Go to Contents !

4.3. PROPERTIES OF DISCRETE GAUSSIANS

Lemma 4.7 (Sum of Independent Discrete Gaussians)

Let d be a positive integer, and ε in (0, 1/2]. Let s1, s2 be two positive reals, c1, c2,a1,a2 in
Rd and L ⊂ Rd a lattice of full rank d. We define a = a1+a2, c = c1+c2, and s =

√
s21 + s22.

We also define t = 1/
√
s−21 + s−22 . If t ≥ ηε(L), it then holds that

∆(DL+a1,s1,c1
+DL+a2,s2,c2

,DL+a,s,c) ≤
ε

1− ε
∼

ε→0
ε.

Proof (Lemma 4.7). We call f the probability density function of DL+a1,s1,c1
+ DL+a2,s2,c2

.
Its support is L+ a. Let x be in L+ a. We define c′ = t2(s−21 c1 + s−22 (x− c2)) = (s2/s)

2c1 +
(s1/s)

2(x− c2). We then have

f(x) =
∑

y∈L+a1

DL+a1,s1,c1(y) · DL+a2,s2,c2(x− y)

=
1

ρs1,c1
(L+ a1)ρs2,c2

(L+ a2)

∑
y∈L+a1

ρs1,c1(y)ρs2,c2(x− y)

=
1

ρs1,c1−a1
(L)ρs2,c2−a2

(L)
∑

y∈L+a1

ρs,c(x)ρt,c′(y) [Pei10, Fact 2.1]

= DL+a,s,c(x) ·
ρs,c(L+ a)ρt,c′(L+ a1)

ρs1,c1−a1(L)ρs2,c2−a2(L)

= DL+a,s,c(x) ·
ρs,c−a(L)ρt,c′−a1

(L)
ρs1,c1−a1

(L)ρs2,c2−a2
(L)

.

We now observe that f is proportional to DL+a,s,c, at the exception that c′ depends on x.
Yet, we have seen that c′ can be “smoothed out” when computing the Gaussian mass of the
lattice if the Gaussian width exceeds the smoothing parameter. As t ≥ ηε(L), Lemma 4.4
yields

ρt,c′−a1
(L) ∈

[
1− ε
1 + ε

, 1

]
ρt(L) (4.1)

We then get that

f(x) ∈
[
1− ε
1 + ε

, 1

]
· DL+a,s,c(x) ·

ρs,c−a(L)ρt(L)
ρs1,c1−a1(L)ρs2,c2−a2(L)

=

[
1− ε
1 + ε

, 1

]
· α · DL+a,s,c(x)

for a constant α which does not depend on x. Because the support of f is exactly that of
DL+a,s,c and that they are probability distributions, summing over all the x ∈ L + a then
gives α(1 − ε)/(1 + ε) ≤ 1 ≤ α. We deduce that the constant of proportionality α is in the
interval [1, (1 + ε)/(1− ε)]. We then get that for all x ∈ L+ a

f(x) ∈
[
1− ε
1 + ε

,
1 + ε

1− ε

]
· DL+a,s,c(x),

and thus that ∣∣f(x)−DL+a,s,c(x)
∣∣ ≤ max

(
2ε

1 + ε
,

2ε

1− ε

)
=

2ε

1− ε
.

Summing over all x, with the factor 1/2 of the statistical distance, we get that

∆(DL+a1,s1,c1 +DL+a2,s2,c2 ,DL+a,s,c) ≤
ε

1− ε
∼

ε→0+
ε,

as claimed.

The smoothing condition can be simply met. For example, when we consider spherical Gaus-
sians with width s1, s2, it suffices to have s1, s2 ≥

√
2ηε(L). This ensures that t = (s−21 +s−22)−1 ≥

ηε(L).

! Go to Contents 61

4. GAUSSIAN DISTRIBUTIONS OVER LATTICES

4.3.2 Gaussian Tail Bounds
A very important property of Gaussian distribution is that there are concentrated around their
center c. This means that when sampling x according to a Gaussian distribution, it will be close
to c with high probability (for a usual notion of distance like the Euclidean distance for example).
These results are called tail bounds as they bound the probability that a Gaussian sample falls in the
tails of the Gaussian. It capture the fact that the probability density is lower when you are far from
the center than when you are close to the center. And the decrease is super-exponential. It turns
out that discrete Gaussian distribution also verify such tail bounds, sometimes under smoothing
conditions. We first give the original tail bound on the Euclidean norm by Banaszczyk [Ban93].

Lemma 4.8 (Banaszczyk Tail Bound [Ban93])

Let d be a positive integer. Let L ⊂ Rd be a full-rank lattice, c ∈ Rd and s a positive real.
For all c ≥ 1/

√
2π, it holds that

Px∼DL,s

[
∥x∥2 > c · s

√
d
]
≤
(
c
√
2πee−πc

2
)d

Px∼DL,s,c

[
∥x− c∥2 > c · s

√
d
]
≤ 2

(
c
√
2πee−πc

2
)d
· ρs(L)
ρs,c(L)

We can then derive the following tail bounds.

Lemma 4.9 (Euclidean Tail Bound)

Let d be a positive integer. Let L ⊂ Rd be a full-rank lattice, c ∈ Rd and s a positive real.
It holds that

Px∼DL,s

[
∥x∥2 > s

√
d
]
≤ 2−2d

Px∼DL,s,c

[
∥x− c∥2 > s

√
d
]
≤ 1 + ε

1− ε
2−2d if s ≥ ηε(L)

Proof (Lemma 4.9). The first bound comes directly from the first bound of Lemma 4.8 for
c = 1 ≥ 1/

√
2π. Indeed, we have

√
2πee−π ≤ 0.178 ≤ 1/4. For the second one, we also use

Lemma 4.8 with c = 1 as well as Lemma 4.4 to conclude. Whenever d ≥ 3, we have that
2(
√
2πee−π)d ≤ 2−2d.

Another very interesting tail bound used in lattice-based cryptography is a bound on the ℓ∞
norm. The following is generally attributed to Peikert [Pei08], but this simpler version was actually
proven in [Ban95].

Lemma 4.10 (Infinity Tail Bound)

Let d be a positive integer. Let L ⊂ Rd be a full-rank lattice, c ∈ Rd and s a positive real.
For all t ≥ 0

Px∼DL,s

[
∥x∥∞ > t · s

]
≤ 2d · e−πt

2

Px∼DL,s,c

[
∥x− c∥∞ > t · s

]
≤ 2de · e−πt

2

if s ≥ ηε(L) for ε ≤ 1/3

4.4 Sampling Gaussians over Lattices
As presented, it is possible to theoretically define discrete Gaussian distributions over lattices. They
benefit from nice geometric properties just like regular Gaussian distributions do. The properties
that we enumerated in the previous sections are very interesting in cryptography. However, there
remains one concerning point which is the link between discrete Gaussian distributions and the
supposedly hard problems on lattices we introduced in Chapter 3 (SVP, CVP, etc.).

Let us consider the SVPγ problem in full-rank lattices of dimension d, and let L be such a
lattice. We let s > ηε(L) be a Gaussian parameter and we consider the distribution DL,s. Let x

62 Go to Contents !

4.4. SAMPLING GAUSSIANS OVER LATTICES

be a sample from this distribution. By Lemma 4.9, it holds that ∥x∥2 ≤ s
√
d with overwhelming

probability. Additionally, we have that H∞(DL,s) ≥ d log2 s− log2(Vol L)− log2(1− ε). Here, the
volume of the lattice can be deduced from any basis of the lattice. Alternatively, we can use another
result by Peikert and Rosen [PR06] which states that if s > 2ηε(L), then H∞(DL,s) ≥ d, which
is going to be sufficient for this argument. Indeed, it means that DL,s(0) ≤ 2−H∞(DL,s) ≤ 2−d.
In other terms, it proves that the probability that the sample x is 0 is bounded above by 2−d.
Hence, x is non zero with overwhelming probability. This means x is a valid solution of SVPγ if
γλ1(L) ≥ s

√
d.

The question is now twofold.

Can we choose a Gaussian parameter s as small as γλ1(L)/
√
d? If so, can we sample x in

polynomial time?

According to Conjecture 3.1, both should not be possible for γ = poly(d), otherwise the conjecture
would not hold. It turns out that to be able to sample x according to a discrete Gaussian distri-
bution over L, we need an algorithmic representation of L, that is a basis. However, we have seen
that a basis can be composed of very long almost colinear vectors in which case it seems difficult
to generate short Gaussian samples. On the contrary, if the basis is short and close to orthogonal,
this task should be easy. Intuitively, the width s of the Gaussian we are able to sample should
depend on the quality of the given lattice basis. This is indeed the case and it explains why our
approach for solving SVPγ does not work in practice. A hard instance of SVPγ is giving a bad
basis like we described, which means that we would only be able to sample Gaussian samples with
a huge width that exceeds γλ1(L)/

√
d.

We note however that it is always possible to sample from a discrete Gaussian distribution with
any width. The catch is that the narrower the Gaussian, the more time it takes if the basis is not
sufficiently small to begin with. Typically, given a bad basis, it would take an exponential time
complexity to sample from a discrete Gaussian that is significantly narrower than the size of the
basis.

4.4.1 Klein Sampler
In 2000, Klein proposed a way to sample discrete Gaussians, which was later formalized and
generalized in 2008 by Peikert, Gentry and Vaikuntanathan [GPV08]. This algorithm gives an
efficient way to sample from a distribution that is statistically close to a discrete Gaussian on any
lattice, provided that the Gaussian parameter is sufficiently larger than the Gram-Schmidt norm
of the given basis. We describe the algorithm here, assuming an efficient integer sampler for the
distribution DZ,s,c for any s ≥ ηε(Z) and c ∈ R. The latter will be studied in TD 1 .

Algorithm 4.1: Klein(B, s, c)
Input: Basis B = [bi]i∈J1,dK of the lattice L, Gaussian parameter s > 0, center c ∈ Rd.
Precomputation: Compute the Gram-Schmidt vectors GSO(B) = [b∗

i]i∈J1,dK, and the intermediate
widths si = s/∥b∗

i ∥2.
1. vd ← 0
2. for i = d, . . . , 1 do
3. di ← ⟨c− vi , b

∗
i ⟩/∥b∗

i ∥22 ∈ R.
4. zi ←↩ DZ,si,di .
5. vi−1 ← vi + zibi.

Output: v0. ▷ Statistically close to DL,s,c.

The sampler was analyzed in depth by Prest [Pre17], giving a finer result on the distribution
outputted by the sampler and its statistical distance with the ideal distribution.

Theorem 4.2 (Distribution of Klein’s Sampler [GPV08, Pre17])

Let d be a positive integer. Let L be a lattice of full rank d, c ∈ Rd, ε in (0, 1/4), and
s ≥ ηε(Zd) ·

∥∥GSO(B)
∥∥
∞ where ∥A∥∞ = maxi∈J1,dK∥ai∥2. We then have

∆(Klein(B, s, c),DL,s,c) ≤
1

2

((
1 + ε/d

1− ε/d

)d

− 1

)
≈ ε.

! Go to Contents 63

4. GAUSSIAN DISTRIBUTIONS OVER LATTICES

Proof (Theorem 4.2). See TD 1

64 Go to Contents !

BIBLIOGRAPHY

] RECAP]

• Discrete Gaussian are defined by the probability mass function DL,s,c = ρs,c(·)/ρs,c(L)
where ρs,c(x) = exp(−π∥x− c∥22 /s2).

• The smoothing parameter of a lattice L is ηε(L) = min{s > 0 : ρ1/s(L∗) ≤ 1 + ε}.

• When s is above the smoothing parameter of L, the discrete Gaussian behaves like
a continuous Gaussian. In particular, for x ←↩ DL,s,c, the Gaussian tail bound gives
∥x− c∥2 ≤ s

√
d with overwhelming probability (provided that s ≥ ηε(L)).

• For an arbitrary lattice L, Klein’s algorithm allows for sampling a distribution that is
statistically close to DL,s,c given a basis B of L, as long as s ≥

∥∥GSO(B)
∥∥
∞ · ηε(Z

d).

Bibliography
[Ban93] W. Banaszczyk. New Bounds in Some Transference Theorems in the Geometry of Num-

bers. Math. Ann., 1993.

[Ban95] Wojciech Banaszczyk. Inequalites for convex bodies and polar reciprocal lattices in rn.
Discret. Comput. Geom., 1995.

[Ebe02] W. Ebeling. Lattices and Codes. 2002.

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for Hard Lattices and New
Cryptographic Constructions. In STOC, 2008.

[MR07] D. Micciancio and O. Regev. Worst-Case to Average-Case Reductions Based on Gaussian
Measures. SIAM J. Comput., 2007.

[Pei08] C. Peikert. Limits on the Hardness of Lattice Problems in lp Norms. Comput. Complex.,
2008.

[Pei10] C. Peikert. An Efficient and Parallel Gaussian Sampler for Lattices. In CRYPTO, 2010.

[PR06] C. Peikert and A. Rosen. Efficient Collision-Resistant Hashing from Worst-Case Assump-
tions on Cyclic Lattices. In TCC, 2006.

[Pre17] T. Prest. Sharper Bounds in Lattice-Based Cryptography Using the Rényi Divergence.
In ASIACRYPT, 2017.

[Reg05] O. Regev. On Lattices, Learning With Errors, Random Linear Codes, and Cryptography.
In STOC, 2005.

! Go to Contents 65

5. FUNDAMENTAL PROBLEMS: SIS AND LWE

5

Fundamental Problems: SIS and LWE

The lattice problems that we introduced in Chapter 3 form a solid base to prove the security of
cryptographic systems. However, these problems are usually called worst-case problems which
makes it difficult to directly base cryptographic designs on them. Indeed, for every dimension d,
there exists lattices of dimension d for which it is easy to find the shortest vector (SVP) or the
vector closest to a target (CVP). The hardness results on SVP, CVP, their approximate variants
SVPγ , CVPγ , and many more, only concern the worst instances of these problems. In other words,
these results only guarantee there exists lattices for which these problems are exponentially hard
(either proven or conjectured). To obtain secure cryptographic constructions, one would need to
have an efficient way of finding these hard instances, while finding secret information on them to
allow signature or decryption for example. As this is no easy task, this motivated the introduction
of more flexible fundamental problems called average-case problems for which the instances can be
sampled (pseudo)randomly. The attractive feature of these problems, which is unique to lattice-
based cryptography, is that they are proven to be at least as hard as the worst instance of the
lattice problems defined in Chapter 3. They are thus easy to use, while proven at least as difficult
to solve as hard problems on lattices. We present the two main average-case problems called Short
Integer Solution (SIS) and Learning With Errors (LWE).

Contents
5.1 Short Integer Solution . 66

5.1.1 Problem Definitions . 66
5.1.2 Hardness of Short Integer Solution . 68
5.1.3 Application: Ajtai Hash Function . 69

5.2 Learning With Errors . 70
5.2.1 Problem Definitions . 71
5.2.2 Computational-Decisional Equivalence 73
5.2.3 Hardness of Learning With Errors . 74

5.1 Short Integer Solution
We start by introducing the Short Integer Solution problem. The use of lattices in cryptography
was really kick-started by the seminal work of Ajtai in 1996 [Ajt96]. He introduced the SIS problem
as a versatile problem, while proving it was benefiting from a worst-case to average-case reduction
from a variant of SVP. This means that if one is able to solve the SIS problem (on random
instance with substantial probability), then one can solve the worst instance of GapSVPγ . We
start by defining the problem and how it links to lattice problems, before stating the hardness
results of Ajtai. We then give the construction of Ajtai’s hash function and Ajtai’s commitment
scheme whose security relies on the hardness of SIS.

5.1.1 Problem Definitions
The problem was introduced by Ajtai in 1996 [Ajt96], and later formalized by Micciancio and
Regev in 2007 [MR07]. It relies on the observation mentioned above that hard lattices may be

66 Go to Contents !

5.1. SHORT INTEGER SOLUTION

impractical to find and use in cryptography. One would instead to find random instances of certain
lattice problems, say SVPγ . For that, one needs to essentially sample random lattices1, for which
the problems are expected to be hard. However, we want SVPγ to be hard on such random lattices.
We must then find families of lattices that are easy to sample randomly, while preserving some
guarantee of hardness for the associated computational problems.

Thence, consider a matrix A in Zd×m
q for positive integers d,m and q such that m ≥ d. Then

one can consider the q-ary parity check lattice L⊥q (A) described in Definition 2.3, i.e.,

L⊥q (A) = {x ∈ Zm : Ax = 0 mod qZ},

One can consider the SVPγ problem on the lattice L⊥q (A) which is to find a non-zero integer vector
x such that Ax = 0 mod qZ and ∥x∥2 ≤ γ · λ1(L⊥q (A)) =: β. We note that the problem may be
easy if one knows a good basis of L⊥q (A), i.e., composed of short vectors. In 1996, Ajtai showed
that finding short vectors in L⊥q (A) (and in turn a short basis) for A uniformly chosen in Zd×m

q is
at least as hard as the worst instances of GapSVPγ for γ = poly(m). This result in the following
definition for the SIS problem. We note it can be generalized to any ℓp-norm or even combinations
of norms by imposing bounds on the ℓ2 and ℓ∞ norms for example.

Definition 5.1 (Short Integer Solution)

Let d,m, q be three positive integers, and β a positive real. The Short Integer Solution
problem SISd,m,q,β asks to find a vector x ∈ Zm such that Ax = 0 mod qZ and 0 <∥x∥2 ≤ β,
given a uniformly random matrix A in Zd×m

q .

For an adversary A, we define its advantage in solving SISd,m,q,β by

AdvSIS[A] = PA∼U(Zd×m
q),A[A · A(A) = 0 mod qZ ∧ 0 <

∥∥A(A)
∥∥ ≤ β].

When the parameters are clear from the context, we define the hardness bound of SISd,m,q,β for a
time complexity t by

εSIS(t) = sup
A t-time

AdvSIS[A].

The choice of the parameters d,m, q, β is crucial to obtain a problem that is hard enough, but
that is not vacuously hard. Typically, one needs to set the parameters so that there exists such a
solution, which is not guaranteed for every matrix A for any parameters. We give the following
lemma yielding a sufficient condition on the parameters for the problem to admit a solution. This
result is adapted from [MR07, Lem. 5.2].

Lemma 5.1 (Existence of SIS Solution)

Let d,m, q be three positive integers, and β a positive real. If β ≥
√
m·⌊qd/m⌋, then SISd,m,q,β

admits at least one solution.

Proof (Lemma 5.1). The proof relies on the pidgeon-hole argument. Consider the domain
D = {0, . . . , ⌊qd/m⌋}m. Let A be a matrix in Zd×m

q and consider the function fA : x ∈ D 7→
Ax mod qZ ∈ Zd

q . Since |D| = (⌊qd/m⌋ + 1)m > (qd/m)m = qd =
∣∣∣Zd

q

∣∣∣, there must exist two
distinct vectors x1,x2 in D such that fA(x1) = fA(x2). Then, define x = x1 − x2. By
construction, it holds that x ̸= 0, and Ax = Ax1 −Ax2 = 0 mod qZ. Additionally, we have

∥x∥2 ≤
√
m ·∥x∥∞ ≤

√
m · ⌊qd/m⌋ ≤ β,

which proves that x is a solution of SISd,m,q,β . Hence, SISd,m,q,β admits a solution.

We note that the problem may be trivial if the norm constraints do not exclude vectors have
coefficients of size q. Indeed, if the only norm constraint is β ≥∥x∥2 with β ≥ q, then one could
solve the problem with x = [q|0| . . . |0]T . Hence, in cryptography, we always consider parameters
for SIS such that β < q. Another method, which has become more and more usual, is to consider

1For example, we randomly generate a good basis (kept secret), and we publish its HNF (randomized) which
represents the same lattice but which is a bad basis.

! Go to Contents 67

5. FUNDAMENTAL PROBLEMS: SIS AND LWE

a second constraint in ℓ∞ norm. More precisely, a solution must verify ∥x∥2 ≤ β and ∥x∥∞ ≤ β∞.
By choosing β∞ < q, we could then allow for β ≥ q without necessarily making the problem easy.
However, the concrete hardness of this variant is not yet well studied.

Another observation is that A defines a linear function. We can then efficiently find a non-
zero vector that satisfy Ax = 0 mod qZ using the Hermite Normal Form algorithm (which is
the generalization of the Gauss elimination algorithm for integer matrices). However, it is not
guaranteed that x is bounded by β. Therefore, the norm constraint is paramount to hope for a
hard problem.

Inhomogeneous Variant

We can also define an inhomogeneous version of the problem where instead of asking for a vector
in the q-periodic kernel of A, we ask for a preimage x of a random syndrome y by A that is short.
Again, without a norm constraint, this problem would be easy by just solving an inhomogeneous
system of linear equations.

Definition 5.2 (Inhomogeneous Short Integer Solution)

Let d,m, q be three positive integers, and β a positive real. The Inhomogeneous Short Integer
Solution problem ISISd,m,q,β asks to find a vector x ∈ Zm such that Ax = y mod qZ and
∥x∥2 ≤ β, given a uniformly random matrix A in Zd×m

q and a uniform syndrome y ∈ Zd
q .

Notice that we no longer constrain the vector x to be non zero. Indeed, if x = 0 and y ̸= 0,
then x is not a solution anyway. Also, we observe that if β ≥ q, the ISIS problem is not necessarily
trivial as SIS was. The argument we put forward was that q is non zero in Z but zero in Zq. We
thus had trivial solutions qei. Here, we do not ask for a short preimage of 0, which completely
changes the context.

Nevertheless, we can identify conditions for which the problem is still easy. For that, assume
we fix the representatives of equivalence classes of Zq to be the integers in Zq = Z ∩ [−q/2, q/2).
If β ≥ q

√
m/2, the ISISd,m,q,β is trivially easy. Indeed, we can easily find x ∈ Zm

q such that
Ax = y mod qZ (by solving the linear system without norm constraint). We consider x′ to be the
unique representative of x in Zm

q . Then, Ax′ = y mod qZ, and
∥∥x′∥∥

2
≤ q/2 ·

√
m ≤ β. Hence, we

must have β < q
√
m/2.

We remark that q
√
m/2 is the maximal norm of a vector in Zm

q . It is possible that the found
x′ is smaller. In general, if A and y are chosen uniformly, a solution x′ found by solving the linear
system without constraint will be close to a uniform vector of Zm

q . Yet, the norm of a uniform vector
is concentrated around q

√
m/12. So this naive method would solve ISIS as soon as β ≳ q

√
m/12.

We can go even further by observing that the system defined by A is underdetermined due to the
fact that m ≥ d.If we assume A contains an invertible submatrix (let us assume it corresponds
to the first d columns without loss of generality), we can choose x′:d as A−1:d y mod qZ (where the
inverse is computed in Zq) and define the rest of the entries of x′ to be 0. As a result, x′ would
have a norm close to q

√
d/12.

To summarize, the problem is easy when β ≳ q
√
d/12. Recent works have shown that it is

possible to solve it for slightly smaller bounds as well, but it is beyond the scope of this course.

5.1.2 Hardness of Short Integer Solution

We now provide one of the several result providing a worst-case to average-case reduction from
lattice problems to SIS. In particular, the main reductions are given in [Ajt96, Ajt98, MR07,
GPV08]. Here we provide the adapted statement and proof sketch of the reduction by Gentry et
al. [GPV08].

Theorem 5.1 (Worst-Case Hardness of SIS)

Let d be a positive integers. There exists a polynomial-time worst-case to average-case
reduction from SIVPγ to SISd,m,q,β for all m, q, β, γ such that γ ≥ 2β

√
d, q ≥ 2β

√
d and

m, log2 q ≤ poly(d).

68 Go to Contents !

5.1. SHORT INTEGER SOLUTION

Proof (Theorem 5.1). We only give a sketch proof which is simplified when q = 2β
√
d. We

also assume that γ ≥ q to simplify the reduction, but this condition is not necessary (if q > γ,
we later choose s = q∥S∥∞ /γ). For the full proof, we refer to [GPV08].

We assume the existence of an oracle A which solves SISd,m,q,β and aim at solving any
instance of SIVPγ . We thus consider an instance given by a lattice L, and more precisely by
a basis B of L. For the reduction, we use a set (seen as a matrix) S of linearly independent
vectors of the lattice, which is initialized to S = B. We choose a parameter s =∥S∥∞ ≥ qηε(L).
Note that∥S∥ = maxi∈J1,dK∥Sei∥2 ≥∥S∗∥∞ ≥ ηε(L), and if S is not a solution to SIVPγ , then
∥S∥ ≥ γλd(L). The reduction proceeds as follows.

Sampling A : For i from 1 to m, sample yi from DL,s using S and set ai = B−1(yi mod
qL) mod qZ ∈ Zd

q . We note here that B−1 simply allows us to get the vector of integer
coefficients of a lattice point. We have seen that by Lemma 4.5 it holds ∆(DL,s,c mod
L′, U(L mod L′)) ≤ 2ε if s ≥ ηε(L′). Since we have s ≥ qηε(L), we have ∆(DL,s mod
qL, U(L mod qL)) ≤ 2ε, which implies that ai is statistically close to the uniform over
Zd
q . Additionally, since the yi are independent, so are the ai. We can thus use the SIS

oracle.

Solving SIS for A: We define A = [ai]i∈J1,mK and use A to solve SISd,m,q,β and get x ∈ Zm

such that Ax = 0 mod qZ and 0 <∥x∥2 ≤ β.

Combining elements: We define Y the matrix of L mod qL by Y = [yi mod qL]i∈J1,mK. We
define x∗ = 1

qYx ∈ L. We indeed want to show that x∗ is in L. It suffices to show that
B−1Yx is in qZd (equivalent to Yx ∈ qL). By definition, we have B−1Y = A mod qZ
so B−1Yx = Ax mod qZ = 0 mod qZ. So B−1Yx ∈ qZd. We then have∥Yx∥2 ≤ sβ

√
d

so ∥x∥2 ≤ s/2 which is shorter.

To solve SIVPγ , we repeat this procedure to obtain a new set S′ such that
∥∥S′∥∥∞ ≤∥S∥∞ /2.

By repeating the procedure, we can reduce the size until we have a set of linearly independent
vectors of norm at most γλd(L). The reduction works also for the ISIS problem by adding a
well-chosen center to each of the yi.

5.1.3 Application: Ajtai Hash Function

Although it is less efficient than symmetric hash functions such as SHA-2/SHA-3, it is possible
to construct hash functions whose security relies on the hardness of lattice problems. Typically,
Ajtai [Ajt96] constructed a hash function whose collision resistance relies on the hardness of SIS,
and that is pseudorandom (thus behaving as a random oracle) under strong parameter constraints.
We now describe the algorithms KeyGen and H in Algorithms 5.1 and 5.2

Algorithm 5.1: KeyGen (Ajtai Hash Function)
Input: Integers d,m, q

1. A←↩ U(Zd×m
q)

Output: k = A

Algorithm 5.2: HA (Ajtai Hash Function)
Input: Vector x ∈ D ⊂ Zm

1. y←↩ Ax mod qZ

Output: y

We now give a statistical result due to Dodis et al. [DORS08, Lem. 2.1] which states that when
q is prime and the input x has sufficient entropy, then HA is pseudorandom.

Lemma 5.2 (Leftover Hash Lemma)

Let d,m, q be positive integers with q prime. Let X be a distribution on D. Then, it holds

! Go to Contents 69

5. FUNDAMENTAL PROBLEMS: SIS AND LWE

that
∆((A,HA(x)), (A,y)) ≤ 1

2

√
qd · 2−H∞(X),

where A ∼ U(Zd×m
q), x ∼ X , and y ∼ U(Zd

q). In particular, if |D| = Bm and X = U(D),
then the statistical distance is 1

22
− 1

2 ·(m log2 B−d log2 q). So if m log2B ≥ d log2 q + 2(λ − 1),
the statistical distance is bounded by 2−λ.

The leftover hash lemma (LHL) is an essential tool in cryptography. We have stated it in the
case of Ajtai’s hash function but it is much more general and can be used in various contexts.
Here, it proves that HA is (∞, 2−λ)-pseudorandom under the parameter constraints of Lemma 5.2.
This means that HA is 2−λ-close to a behaving as a random oracle. We note that this lemma is
statistical and there are no computational assumption underlying it. We now look at the collision
resistance of HA.

Lemma 5.3 (Collision Resistance of Ajtai Hash)

Let d,m, q,B be positive integers, and D = {0, . . . , B}m. We then define β = B
√
m.

Then, the Ajtai Hash Function is (t, εSIS(t + O(m)))-collision resistant, where εSIS(t
′) =

supA t′-time AdvSIS[A] is the hardness bound of SISd,m,q,β .

Proof (Lemma 5.3). Let A be sampled uniformly in U(Zd×m
q), and let A be an adversary

against the collision resistance of HA running in time at most t. We denote by ε its probability
of succeeding and we want to bound ε. We now construct B attacking SISd,m,q,β in time at
most t′ = t + O(m). B calls A on A and gets a collision (x,x′) ∈ D2 such that x ̸= x′ and
HA(x) = HA(x′) with probability ε. It then computes x∗ = x−x′ and returns it as a solution
of SISd,m,q,β .

Firstly, B indeed runs in time at most t+O(m) as it makes one call to A which takes time
at most t and computes x∗ which takes time at most O(m). Now we verify that if (x,x′)
breaks the collision resistance, then x∗ is indeed a SIS solution. To see it, we first have that
Ax∗ = HA(x) −HA(x′) = 0 mod qZ. Additionally, it holds that x∗ ̸= 0 as x ̸= x′. Finally,
we have that x∗ is in {−B, . . . , B}m. Thence

∥x∗∥2 ≤∥x
∗∥∞
√
m ≤ B

√
m = β.

This proves the inclusion of events that we need to justify the following inequalities

ε = PA∼U(Zd×m
q),(x,x′)←A(A)[x ̸= x′ ∧HA(x) = HA(x′)]

≤ PA∼U(Zd×m
q)[A · B(A) = 0 mod qZ ∧ 0 <

∥∥B(A)
∥∥
p
≤ β]

= AdvSIS[B]
≤ sup
B′ t+O(m)-time

Adv[B′]

= εSIS(t+O(m)),

as claimed.

5.2 Learning With Errors
We now introduce a second fundamental problem called Learning With Errors (LWE). It was
introduced by Regev in 2005 [Reg05] and was proven as versatile as the Short Integer Solution
problem. In particular, the Learning With Errors problem benefits from worst-case to average-
case reductions from hard lattice problems such as variants of the SVP problem like SVPγ or
GapSVPγ . In the seminal paper of Regev, a simple bit encryption scheme is proposed and proven
secure under the Learning With Errors assumption. We present this encryption scheme in Chap-
ter 6. This construction, and the assumption more generally, gave rise to many other lattice-based
cryptographic constructions. A famous example is the first realization of Fully-Homomorphic En-
cryption by Gentry [Gen09]. One of the perks of the LWE problem over the SIS problem is that
it offers a decisional assumption. We start by introducing the problem and then establish results

70 Go to Contents !

5.2. LEARNING WITH ERRORS

on its hardness and on the equivalence between the search and decision variants.

5.2.1 Problem Definitions
Just like the Short Integer Solution problem, the purpose of the Learning With Errors problem
is to provide a more flexible assumption to design cryptography upon. Nevertheless, it can still
be interpreted as a lattice problem on the random lattices we introduced in Definition 2.3. More
precisely, we consider a matrix A in Zm×d

q for positive integers d, m and q such that m ≥ d. Notice
that here the dimension m and d for the matrix are swapped compared to the case of SIS, which
can be interpreted as a simple transpose of the matrix A. Regardless, one can define the following
lattice

Lq(A) = {y ∈ Zm : ∃s ∈ Zd
q ,As = y mod qZ}.

One can consider the CVPγ or BDDγ problems on the lattice Lq(A) which corresponds to finding
the closest lattice point As to a target vector t ∈ Rm. By writing t = As + e with ∥e∥2 ≤
λ1(Lq(A))/2, the problem becomes finding e (or s) given A and t.

In general, the LWE problem is not presented as a CVP instance but rather as a linear algebraic
problem. Given A and As + e mod qZ, the problem asks to solve this noisy linear system and
recover s. We note here that the problem is equivalent to finding e as it leads to knowing As mod qZ
which can then be solved using regular linear algebra, because A has more rows than columns.
In particular, it means that the error e is crucial in making the problem hard. Without error,
the problem would be solved using Gauss elimination. The decision variant consists in deciding
whether the given vector t was indeed generated as As+ e mod qZ for some secret s and error e
or if it was sampled completely at random.

We now give the formal definition of LWE. We start by defining the LWE distribution. The
distribution has a secret vector s hardcoded as well as an error distribution, and outputs what we
call LWE samples. We then define the search and decision variants of Learning With Errors based
on the latter distribution.

Definition 5.3 (Learning With Errors Distribution)

Let d, q be positive integers. Let s be in Zd
q , and De be a distribution over Z. The LWE

distribution denoted by As,De
is defined by the following random process: sample a←↩ U(Zd

q),
and e←↩ De, and output (a,aT s+ e mod qZ).

A sample from this distribution is therefore one equation of the noisy linear system. Although
it is common to limit the number of equations to m, and thus write the problem in matrix form
As + e, several more theoretical works do not fix a priori the number of equations. We present
here the two definitions for completeness.

Definition 5.4 ((Search) Learning With Errors)

Let d, q be positive integers. Let Ds be a secret distribution over Zd
q , and De be an error

distribution over Z. The search Learning With Errors problem sLWEd,q,Ds,De is as follows.
Let s be drawn from Ds. Given arbitrarily many samples (ai,a

T
i s+ ei mod qZ) drawn from

As,De
, find s.

When the number of available samples is limited to m, we write the problem as
sLWEd,q,m,Ds,De

, and we present it in matrix form as follows. Given A ←↩ U(Zm×d
q) and

t = As+ e mod qZ for some s←↩ Ds and e←↩ Dm
e , find s.

For an adversary A, we define its advantage in solving sLWEd,q,Ds,De
as

AdvsLWE[A] = P(ai,ti)i∼As,De
[A((ai, ti)i) = s].

When the maximal number of samples is fixed to m, we define it as

AdvsLWE[A] = PA∼U(Zd×m
q)

s∼Ds
e∼Dm

e

[A(A,As+ e mod qZ) = s].

When the parameters are not ambiguous, we define the hardness bound of sLWEd,q,Ds,Ds and
sLWEd,q,m,Ds,De for a time complexity t as

εsLWE(t) = sup
A t-time

AdvsLWE[A].

! Go to Contents 71

5. FUNDAMENTAL PROBLEMS: SIS AND LWE

Definition 5.5 ((Decision) Learning With Errors)

Let d, q be positive integers. Let Ds be a secret distribution over Zd
q , and De be an error

distribution over Z. The decision Learning With Errors problem LWEd,q,Ds,De
is as follows.

Let s be drawn from Ds, and let D ∈ {As,De
, U(Zd

q × Zq)}. Given arbitrarily many samples
from D , decide whether D = As,De or if D = U(Zd

q × Zq).
When the number of available samples is limited to m, we write the problem as
LWEd,q,m,Ds,De

, and we present it in matrix form as follows. Given A ←↩ U(Zm×d
q) and

t ∈ Zm
q , decide whether t = As+e mod qZ for some s←↩ Ds and e←↩ Dm

e , or if t←↩ U(Zm
q).

For an adversary A, we define its advantage in solving LWEd,q,Ds,De
as

AdvLWE[A] =
∣∣∣P(ai,ti)i∼As,De

[A((ai, ti)i) = 1]− P(ai,ti)i∼U(Zd+1
q)[A((ai, ti)i) = 1]

∣∣∣ .
When the maximal number of samples is fixed to m, we define it as

AdvLWE[A] =

∣∣∣∣∣∣∣∣PA∼U(Zd×m
q)

s∼Ds
e∼Dm

e

[A(A,As+ e mod qZ) = 1]− PA∼U(Zd×m
q)

t∼U(Zm
q)

[A(A, t) = 1]

∣∣∣∣∣∣∣∣ .
When the parameters are not ambiguous, we define the hardness bound of LWEd,q,Ds,Ds

and
LWEd,q,m,Ds,De

for a time complexity t as

εLWE(t) = sup
A t-time

AdvLWE[A].

A

d

m , t = A
s

+ e mod qZ sSearch Version:

A , t = A
s

+ e mod qZ A , t

û

Decisional Version:

Figure 5.1: Version Calculatoire et Décisionnelle du problème Learning With Errors

Again, just like SIS, the hardness of LWE highly depends on the choice of the parameters d, q,m
and the secret and error distributions Ds,De. Typically, if the error distribution returns 0 with
probability 1 or negligibly close to 1, then the problem becomes vacuously easy. On the contrary,
if De = U(Zq), then the decision variant becomes ill-defined while the search variant becomes
statistically hard. Indeed, if e is uniform and independent of As, then As+ e mod qZ is perfectly
uniform. There is then no distinction between the two distributions of the decision problem.

The original formulation by Regev [Reg05] chooses d as the dimension which drives the hardness,
q as a prime number, and Ds = U(Zd

q) and De = DZ,αq for a relative error rate α ∈ (1/q, 1). In
this parameter regime, LWE can be proven as hard as standard lattice problems in the worst-case.
For the original formulation, we change the subscript to LWEd,q,α for short.

There are however many other regimes that offer interesting perspectives such as Ds = U({0, 1}d)
and/or De = U({0, 1}). They are much trickier to prove hard though. The class of problems for
which Ds = Dd

e are usually referred to as Hermite Normal Form Learning With Errors.

Remark 5.1 (Primal Attack and Unique SVP)

Although we introduced sLWE as a special CVP instance, the sLWE problem can
be interpreted as a specific SVP instance instead. Let us consider the problem

72 Go to Contents !

5.2. LEARNING WITH ERRORS

sLWEd,q,m,U({0,1}d),U({0,1}), and a given instance (A, t) with t = As + e mod qZ. The
definition of t can be re-written as

[Im|A|t] ·

 e
s
−1

 = 0 mod qZ.

Defining x = [eT |sT | − 1]T , it holds that x is a non-zero vector of norm at most
√
m+ d+ 1

in the lattice L⊥q ([Im|A|t]). It can be shown that x actually verifies∥x∥2 = λ1(L⊥q ([Im|A|t]))
and, as such, solving SVP on this lattice allows one to recover s (and e). This solving method
of sLWE is called the primal attack, which consists in interpreting the sLWE instance as an
instance of Unique-SVP. The Unique-SVP problems corresponds to SVP where there is the
extra assurance that there are only two non-zero vectors having the shortest norm.

We will see in TD 2 that under certain conditions on the parameters, there exists a
reduction from the decisional version of LWE to SIS.

5.2.2 Computational-Decisional Equivalence

This is not often the case for cryptographic assumptions, but we can actually show that for well-
chosen parameters the search and decision versions of LWE are equivalent. This result, also due
to Regev [Reg05], proves that, up to a polynomial factor, the two problems are as hard as each
other when Ds = U(Zd

q). We first show the most natural reduction from the decisional version to
the search version. We prove it for the matrix form because it is the most usual in cryptography.
Note however that these reductions also work for an unbounded number of LWE samples.

Lemma 5.4 (Decision to Search)

Let d, q,m be positive integers. Let Ds be a secret distribution over Zd
q , and De be an

error distribution over Z. There is a polynomial-time reduction from LWEd,q,m,Ds,De to
sLWEd,q,m,Ds,De .

Proof (Lemma 5.4). Let A be a polynomial-time adversary able to solve sLWEd,q,m,Ds,De

with advantage ε. Let (A, t) ∈ Zm×d
q × Zm

q be an instance of LWEd,q,m,Ds,De
. The reduction

B simply calls A(A, t). With probability ε, A returns a vector s ∈ Supp(Ds) such that
t − As mod qZ follows Dm

e . If so, B returns 1 (LWE). On the other hand, if A fails (i.e.,
returns nothing) or if s /∈ Supp(Ds) or if t−As mod qZ does not follow Dm

e , then B returns
0 (uniform). As there is only one call to A, the reduction is indeed polynomial time. We also
get

AdvLWE[B] ≥ AdvsLWE[A].

Hence, if AdvsLWE[A] is non-negligible, then B can solve LWE with non negligible advantage
as well.

Lemma 5.5 (Search to Decision)

Let d, q,m be positive integers that are polynomial in the security parameter, with q
prime. Let De be an error distribution over Z. There is a polynomial-time reduction from
sLWEd,q,m,Ds,De to LWEd,q,m,Ds,De .

Proof (Lemma 5.5). Assume we have access to an oracle O able to solve the decision
version LWEd,q,m,Ds,De with advantage ε. Let (A, t = As + e mod qZ) be an instance of
sLWEd,q,m,Ds,De

. The reduction B works as follows.

! Go to Contents 73

5. FUNDAMENTAL PROBLEMS: SIS AND LWE

B(A, t):
0 For i ∈ {1, . . . , d}
1 For s⋆i ∈ Zq

2 Sample u←↩ U(Zm
q)

3 Construct A′ ← A+ [0| . . . |0|u|0| . . . |0] and t′ ← t+ u · s⋆i
4 If O(A′, t′) = 1, store s⋆i and go to the next i, else go to the next s⋆i .
5 Return s⋆ = [s⋆1| . . . |s⋆d].
The matrix A′ is constructed by adding u at the i-th column of A.
First, note that the procedure inside the two loops (steps 2 to 4) can be repeated k times

to amplify the success probability according to the advantage of the oracle O. Typically, if we
assume ε is non negligible, we can take k of the order of ⌈1/ε⌉.

Let us now analyze the reduction. First, B calls O at most d · q times (or d · q · k in case
of amplification). Because d and q are polynomial, and O is polynomial time, B is indeed
polynomial time itself.

The reduction tries all the possibilities coefficient per coefficient. Hence, instead of brute
forcing the secret which would require

∣∣∣Zd
q

∣∣∣ = qd tries, the oracle allows one to decompose the
search coefficient-wise and only try qd possibilities. Consider the i-th iteration of the outer
loop, and the guess s⋆i for the inner loop. First, because A is uniform and u is chosen uniformly
and independently of A, we get that A′ is indeed uniform over Zm×d

q . Let us now look at the
distribution of t′. We can rewrite t as t = A′s+e−u·si mod qZ where si is the i-th coefficient
of s. Thence, we have t′ = A′s+e+u(s⋆i −si) mod qZ. If s⋆i = si, t′ = A′s+e mod qZ which
is of the form of LWE. As a result, the oracle must indeed return 1 in this case, indicating
that the guess s⋆i is correct. If s⋆i = si, we then have (s⋆i − si) ∈ Z×q because q is prime. Then,
u · (s⋆i − si) is uniform in Zm

q and independent of A′s+ e. We then have that t′ is uniform in
Zm
q . The oracle must then return 0 in that case, indicating the guess s⋆i is wrong.

Notice that we here look at the average-case version where s is drawn uniformly in Zd
q .

We can prove the same reduction when s is arbitrarily chosen (worst-case). The idea is
to re-randomize the secret and use the same reduction as for the average-case. For that,
the reduction simply adds a first step consisting in sampling s′ ←↩ U(Zd

q) and computing
t′′ = t + As′ mod qZ before calling B(A, t′′). The recovered secret is then s + s′ which is
uniform in Zd

q as in the first case described above. The reduction can then unblind the real
secret by substracting s′ (which is known by the reduction) and recover s.

5.2.3 Hardness of Learning With Errors
As mentioned in Remark 5.1, one way to solve sLWE is by solving uSVP on a specific lattice defined
by the sLWE instance. However, uSVP is an extremely hard problem, even with an approximation
factor, as discussed in Chapter 3. There are other ways of approaching solving sLWE but they
(mostly) all are linked to solving hard lattice problems. The best attacks typically using BKZ
have a complexity of exp(O(d log2 q/ log

2
2 α)) for the original formulation sLWEd,q,α. One of the

explanation for such a high complexity is that there exists a worst-case to average-case reduction
from GapSVPγ to sLWEd,q,α. More precisely, Regev proposed a quantum reduction in [Reg05]
which was later made classical (with different parameters and proof techniques) by Brakerski et
al. [BLP+13]. We summarize these results in the following theorem.

Theorem 5.2 (Worst-Case Hardness of LWE)

Let d, q be positive integers such that q ≥ 2, and let α ∈ (0, 1) be such that αq ≥ 2
√
d.

If q is prime and polynomial in d, there exists a polynomial-time quantum reduction from
GapSVPd,γ or SIVPd,γ to sLWEd,q,α for γ = Õ(d/α). For any q, there exists a polynomial-
time classical reduction from GapSVPΘ(

√
d),γ to sLWEd,q,α where γ = Õ(d2/α).

In the quantum reduction, the dimension is preserved between the GapSVP and the sLWE
problems. However, the de-quantization of the reduction weakens the starting assumption as the
dimension is now lowered to around

√
d in the GapSVP assumption, and the approximation factor

is larger by a factor d. We now sketch the proof structure of Regev’s reduction [Reg05]. The details
of the reduction are out of scope for this course.

74 Go to Contents !

5.2. LEARNING WITH ERRORS

Regev’s Proof Structure

Regev uses an intermediate problem called the Discrete Gaussian Sampling (DGS) problem. The
latter is linked to the ability of sampling discrete Gaussian on arbitrary lattices with very small
Gaussian parameters, as seen in Chapter 4. He then shows that DGS is at least as hard as SIVPγ

(or GapSVPγ), and then shows a quantum iterative reduction from DGS to sLWE. Let us first
present the DGS problem.

Definition 5.6 (Discrete Gaussian Sampling Problem)

Let k, d be positive integers, and ϕ be a function from the set of all k-dimensional rank-d
lattices to R+∗. The Discrete Gaussian Sampling problem DGSk,d,ϕ asks to return a sample
from DL,s given a lattice L of dimension k and rank d, and a positive real s > ϕ(L).

Note that the difficulty of DGS highly depends on the lattice basis (see Klein’s algorithm and
Theorem 4.2), and also on how small s can be. The smaller s is, the harder it gets.
Reduction from SIVP2

√
dϕ(L) to DGSϕ if ϕ(L) ≥

√
2ηε(L). Given a lattice L, we start be applying

LLL (Algorithm 2.4) to obtain a set S of d linearly independent vectors of L that have norm
at most 2dλd(L). We call Ld the largest norm among those vectors. By construction, we have
λd(L) ≤ Ld ≤ 2dλd(L). Then, for i ∈ {0, . . . , 2d}, call d2 times the DGSϕ oracle on the instance
(L, ri = Ld2

−i) to get a set Si of d2 vectors. This requires to check that ri > ϕ(L) of course. For
each Si, select (the shortest) d linearly independent vectors, and then select the shortest set among
all these sets.

Let us now briefly explain why this reduction works. First, if ϕ(L) ≥ Ld, then S is already
short enough as all the elements have norm at most Ld ≤ 2

√
dϕ(L). Otherwise, define i =

⌈log2(Ld/ϕ(L))⌉. We now check that i ∈ {0, . . . , 2d} and that ϕ(L) ≤ ri < 2ϕ(L). First, Ld ≥ ϕ(L)
by assumption, so i ≥ 0. Also, we have

22dϕ(L) ≥ 22d · 2ηε(L) ≥ 22d · 2 · λd(L)/d > 2dλd(L) ≥ Ld.

Then, Ld/ϕ(L) ≤ 22d which shows i ≤ 2d. Finally, by definition of i and ⌈·⌉, we have log2(Ld/ϕ(L))−
1 < i ≤ log2(Ld/ϕ(L)) which implies ϕ(L) ≤ Ld/2

i < 2ϕ(L).
Then, because Si contains d2 vectors, with overwhelming probability, there exists d of such

vectors that are linearly independent. Additionally, by Lemma 4.9, all these vectors have norm at
most ri

√
d ≤ 2

√
dϕ(L).

Reduction from DGSϕ to sLWEd,q,α for ϕ(L) = 2
√
dηε(L)/α with αq ≥ 2

√
d. Let L be a lattice

and r be a real such that r > 2
√
dηε(L)/α. For all i, we define ri = r(αq/

√
d)i. The reduc-

tion starts by producing dc samples from DL,r3d . This is possible because r3d > 23dr > 22dλd(L).
Then we iterate to obtain samples with width ri for i going from 3d to 0.

Classical. Given dc samples from DL,ri and an oracle for sLWEd,q,α, construct an oracle for
BDDL∗,αq/ri .

Quantum. Given the oracle for BDDL∗,αq/ri , produce dc samples from DL,ri−1 .

In the end, we have dc samples from DL,r0 = DL,r as desired.

A Word on Quantum Reductions

The proof we presented contains a quantum step. This means that if one is able to solve sLWEd,q,α,
then we can obtain a quantum algorithm for solving SIVPγ . This is more restrictive than a purely
classical reduction. As stated in Theorem 5.2, there also exists classical reduction. More precisely,
Peikert showed in [Pei09] that when q ≥ 2d/2, there is a classical reduction from GapSVPΘ(

√
d),γ to

sLWEd,q,α. It is then completed by [BLP+13] with a reduction from sLWEd,q,α to sLWEd,q′,α′ for
any q′ (and where the noise α′ is linked to α, q, and q′). The classical reduction states that if one is
able to break sLWE classically (resp. quantumly), then one is also able to break GapSVPΘ(

√
d),γ

classically (resp. quantumly) in the worst-case, which is a much tighter statement.

Hardness of Variants

This reduction only holds for the standard formulation of LWE, namely with uniform secret and
discrete Gaussian error. Several works have also studied the hardness of LWE with other dis-
tributions. The most common result is that if LWEd,q,m+m′,Ds,De

is hard and m = Ω(d2), then

! Go to Contents 75

5. FUNDAMENTAL PROBLEMS: SIS AND LWE

LWEd,q,m′,Dd
e ,De

is also hard [ACPS09]. The same holds true for the search variant. This means
that the Hermite Normal Form is harder than its regular counterpart, at the expense of reducing
the number of samples. We will leave this reduction for the exercise sessions.

Another popular line of results is the study of LWE with short distributions. Goldwasser et
al. [GKPV10] were the first to provide a hardness result for LWE with Ds = U({0, 1}d) and
De = DZ,αq, but it was at the expense of a q that is super-polynomial in the dimension d. It was
later improved by Brakerski et al. [BLP+13]. As for the error part, it was shown by Micciancio
and Peikert [MP13] that one could prove the hardness of LWE with Ds = U(Zd

q) and De = U(I)
for I a small interval of integers, e.g., I = {0, . . . , η − 1} for η ≪ q, provided that the number of
samples m was at most d(1 +O(logη d)). For example, for η = 2, this yield m ≥ d(1 +O(log2 d)).
In particular, whenever m ≥

(
d
η

)
, there are possible polynomial-time algebraic attacks.

76 Go to Contents !

BIBLIOGRAPHY

] RECAP]

• The SISd,m,q,β problem asks to find x ∈ Zm such that Ax = 0 mod qZ and 0 <∥x∥2 ≤
β given A ∈ Zd×m

q uniform.

• The ISISd,m,q,β problem asks to find x ∈ Zm such that Ax = u mod qZ and ∥x∥2 ≤ β
given A ∈ Zd×m

q and u ∈ Zd
q uniform.

• If m ≥ d log2 q + 2λ, the leftover hash lemma gives ∆((A,Ax mod qZ), (A,u)) ≤ 2−λ

where A ∈ Zd×m
q , x ∈ {0, 1}m and u ∈ Zd

q are uniformly sampled in their respective
spaces.

• The sLWEd,q,m,Ds,De problem asks to recover the secret s, sampled from Ds, given
A ∈ Zm×d

q uniform, and t = As + e mod qZ where e ←↩ Dm
e . The decisional version

LWEd,q,m,Ds,De
asks to distinguish such a t from a perfectly uniform vector over Zm

q .

• The SIS, ISIS, sLWE,LWE problems enjoy worst-case to average-case reductions from
SIVPγ in dimension d. The reduction for sLWE/LWE is quantum but can be made
classical by changing the parameters. The problems sLWE and LWE are equivalent
under certain constraints if q is polynomial.

Bibliography
[ACPS09] B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast Cryptographic Primitives and

Circular-Secure Encryption Based on Hard Learning Problems. In CRYPTO, 2009.

[Ajt96] M. Ajtai. Generating Hard Instances of Lattice Problems (Extended Abstract). In
STOC, 1996.

[Ajt98] M. Ajtai. The Shortest Vector Problem in L2 is NP -hard for Randomized Reductions
(Extended Abstract). In STOC, 1998.

[BLP+13] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. Classical Hardness of
Learning With Errors. In STOC, 2013.

[DORS08] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. D. Smith. Fuzzy Extractors: How to
Generate Strong Keys from Biometrics and Other Noisy Data. SIAM J. Comput.,
2008.

[Gen09] C. Gentry. Fully Homomorphic Encryption using Ideal Lattices. In STOC, 2009.

[GKPV10] S. Goldwasser, Y. Tauman Kalai, C. Peikert, and V. Vaikuntanathan. Robustness of
the Learning with Errors Assumption. In ICS, 2010.

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for Hard Lattices and New
Cryptographic Constructions. In STOC, 2008.

[MP13] D. Micciancio and C. Peikert. Hardness of SIS and LWE with Small Parameters. In
CRYPTO, 2013.

[MR07] D. Micciancio and O. Regev. Worst-Case to Average-Case Reductions Based on Gaus-
sian Measures. SIAM J. Comput., 2007.

[Pei09] C. Peikert. Public-key Cryptosystems from the Worst-case Shortest Vector Problem:
Extended Abstract. In STOC, 2009.

[Reg05] O. Regev. On Lattices, Learning With Errors, Random Linear Codes, and Cryptogra-
phy. In STOC, 2005.

! Go to Contents 77

Part IV

Constructions
]

In this part, we present the elementary cryptographic constructions on lattices.
In particular, we look at the design of two public key encryption schemes, as

well as the two lattice-based digital signature design paradigms.

6

Public-Key Encryption from LWE

The two problems we have introduced in Chapter 5, namely the Short Integer Solution (SIS)
problem and the Learning With Errors (LWE) problem, are fundamental in designing lattice-
based cryptosystems. The latter is most often used in the design of encryption schemes as we
present in the present chapter. More precisely, we will see two designs of public-key encryption
schemes whose semantic security (Definition 1.10) is proven under the assumption that LWE is a
hard problem. As we have seen in Section 5.2.3, in some parameter regimes, this assumption is
proven at least as hard as worst-case lattice problems. We present the Regev encryption scheme
whose keys are pseudorandom under LWE and whose ciphertexts look somewhat like decision-ISIS
instances. We then present the dual Regev encryption where the roles are essentially swapped.

Contents
6.1 Regev Encryption Scheme . 79

6.1.1 Description . 79
6.1.2 Security Analysis . 80

6.2 Dual Regev Encryption Scheme . 82
6.2.1 Description . 82
6.2.2 Security Analysis . 83

6.1 Regev Encryption Scheme
The first public-key encryption scheme whose security relies on the hardness of the LWE problem
was proposed by Regev [Reg05] and is called Regev encryption. The idea is to generate a key pair
which is an sLWE instance (A, t) for the public key and the underlying secret s is the secret key used
for decryption. The encryption and decryption then has similarities with the El Gamal encryption
scheme over classical groups, but presents key differences due to the peculiarities of lattices. In
particular, lattice problems usually rely on the hardness of finding short vectors. This is why we
choose the error distribution of the LWE problem to output short vectors. This error however
introduces potential decryption failures, which needs to be accounted for during the parameter
setting.

6.1.1 Description
We now describe the Regev encryption scheme at high level before presenting it formally. We
consider a public key composed of sLWE samples of the form (ai, ti = aTi s + ei mod qZ)i for
the underlying secret key s. To encrypt a plaintext M ∈ {0, 1}, we choose a random bit-string
r ∈ {0, 1}m which consists in selecting a random subset of the samples (ai, ti)i. We sum the
samples of this subset and add q

2M to the sum of the ti. To decrypt, one uses s to substract the
part of

∑
i∈S ti +

q
2M that depends on s, which then should be the message part perturbed by a

small error. As the message encoding is chosen so that the difference of encoding of two distinct
messages (here 0 and 1) is large (q/2), the error stays sufficiently small to distinguish these two
cases and thus decrypt correctly.

! Go to Contents 79

6. PUBLIC-KEY ENCRYPTION FROM LWE

Let us now present the scheme in the three algorithms KeyGen, Enc, Dec from Algorithms 6.1, 6.2
and 6.3.

Algorithm 6.1: KeyGen (Regev)
Input: Integers d, q,m, real α, which are functions of the security parameter λ.

1. s←↩ U(Zd
q)

2. A←↩ U(Zm×d
q)

3. e←↩ DZm,αq

4. t← As+ e mod qZ

Output: pk = (A, t), sk = s

Algorithm 6.2: Enc (Regev)
Input: Public parameters, Public Key pk = (A, t) ∈ Zm×(d+1)

q , Message M ∈ {0, 1}.

1. r←↩ U({0, 1}m)
2. (c1, c2)← (AT r mod qZ, rT t+ ⌊q/2⌉M mod qZ) ∈ Zd

q × Zq

Output: (c1, c2)

Algorithm 6.3: Dec (Regev)
Input: Public parameters, Secret Key sk ∈ Zd

q , Ciphertext (c1, c2) ∈ Zd+1
q .

1. u← c2 − cT1 s mod qZ
2. If |u− 0| <

∣∣u± ⌊q/2⌉∣∣, then M ← 0, else M ← 1.

Output: M

The last check relies on the fact that u is the representative of the equivalence class c2 −
cT1 s mod qZ that lies in (−q/2, q/2]. We note that the scheme here can only be used to encrypt
one bit at a time. One can iterate over a bit-string m to encrypt arbitrary long bit-string, but
this would result in quite large ciphertexts. Another possibility is to use a matrix variant of LWE
and design the keys to be (A,T = AS+E mod qZ) where S,E would have k columns in order to
encrypt k-bitstrings directly.

A , t = A
s

+ e
c = AT

t
r

+ 0

=M · ⌊q/2⌉

KeyGen Enc

Figure 6.1: Regev public-key encryption scheme

6.1.2 Security Analysis

We now need to ensure that Regev encryption satisfies the security requirements that we expect
from a public-key encryption scheme. As seen in the course “Security Proofs (PRS)” and recalled
in Section 1.3.1, there exists several security models for public key encryption schemes. In our
case, we will show correctness, and semantic security or IND-CPA security. Let us first look at the
correctness. The correctness actually places restriction on the size of the error e in the public key
to make sure that one can recover the correct message during decryption.

80 Go to Contents !

6.1. REGEV ENCRYPTION SCHEME

Lemma 6.1 (Regev Correctness)

Let d, q,m be positive integers, and α ∈ (0, 1/(4m)). Then, for (pk, sk)← KeyGen(d, q,m, α)
and M ∈ {0, 1}, it holds that Dec(sk,Enc(pk,M)) = M except with probability at most
2−2m, proving that the encryption scheme is correct, with a decryption failure probability of
at most 2−2m.

Proof (Lemma 6.1). Let pk, sk are honestly generated keys and (c1, c2)← Enc(pk,M) be an
honestly generated ciphertext. Then, there exists r ∈ {0, 1}m such that c1 = AT r mod qZ
and c2 = rT (As+ e) + ⌊q/2⌉M mod qZ. As a result, we have

u = c2 − sT c1 mod qZ = (As+ e)T r+ ⌊q/2⌉M − sTAT r mod qZ
= eT r+ ⌊q/2⌉M mod qZ.

By Cauchy-Schwarz inequality, it holds that
∣∣rTe∣∣ ≤∥e∥2∥r∥2 ≤∥e∥2√m as r is binary. Then,

since e is distributed according DZm,αq, it holds that ∥e∥2 ≤ αq
√
m except with probability

2−2m by Lemma 4.9. We now condition on the event ∥e∥2 ≤ αq
√
m. Then, we have

∣∣rTe∣∣ ≤
αqm ≤ q/4.

When M = 0, we have u = rTe and thus |u| ≤ q/4 <
∣∣u± ⌊q/2⌉∣∣ so the retrieved message

during decryption is indeed Dec(sk, (c1, c2)) = 0 as expected. On the contrary, when M = 1,
we have u ∈ [−q/2,−⌊q/2⌉+ q/4]∪ [⌊q/2⌉− q/4, q/2] and thus Dec(sk, (c1, c2)) = 1 as desired.
As a result, we have

P[Dec(sk,Enc(pk,M)) =M]

= P[Dec(sk,Enc(pk,M)) =M |∥e∥2 ≤ αq
√
m]Pe∼DZm,αq

[∥e∥2 ≤ αq
√
m]

+ P[Dec(sk,Enc(pk,M)) =M |∥e∥2 > αq
√
m]Pe∼DZm,αq

[∥e∥2 > αq
√
m]

≥ 1 · (1− 2−2m) + 0

= 1− 2−2m,

as claimed.

Note that the decryption error of 2−2m is solely due to the Gaussian tail bound of the secret error
term. Hence, one could sample e from a Gaussian conditioned on this bound being verified and
thus enforce the bound during key generation. This would result in a perfectly correct encryption
scheme, but the error distribution would now be a truncated discrete Gaussian distribution.

Return 1 Return 1Return 0

− q
2 0

q
2− q

4
q
4

Figure 6.2: Value of u during decryption

e now prove the semantic security of the encryption scheme. The proof relies on the LWEd,q,m,α

assumption as well as the leftover hash lemma from Lemma 5.2. We clearly see that the link
between the secret key and the public key is an instance of sLWEd,q,m,α. Under the assumption
that the latter is a hard problem, it should be infeasible to recover the secret key from the public
key. However, the IND-CPA security is a little more delicate to prove. At a high level, we need
to show that c1 and c2 do not reveal any information on M . This can be interpreted as requiring
that rT [A|t] correctly masks the vector [0d|⌊q/2⌉M].

Lemma 6.2 (Regev Semantic Security)

Let λ, d, q,m be positive integers such that q is prime and that m ≥ (d+ 1) log2 q + 2λ. Let
α ∈ (0, 1/(4m)). Then Regev encryption scheme is (t, ε)-IND-CPA secure where ε = 2−λ−1+
εLWE(t) with εLWE(t) the hardness bound of LWEd,q,m,α. In particular, if εLWE(t) ≤ 2−λ−1,

! Go to Contents 81

6. PUBLIC-KEY ENCRYPTION FROM LWE

then the scheme is (t, 2−λ)-IND-CPA secure.

Proof (Lemma 6.2). See TD 2

We have proven the semantic security of Regev’s encryption scheme. There however exists other
security models which may be more relevant. In particular, one might wonder if Regev’s encryption
is also secure in the IND-CCA models which offer stronger security guarantees. Unfortunately,
Regev’s encryption scheme is not secure in the IND-CCA2 nor IND-CCA1 model. We can indeed
use the algebraic nature of the encryption to modify the ciphertexts in a controlled way while
predicting the behavior of the decryption. This will be studied in TD 6 .

6.2 Dual Regev Encryption Scheme
An alternative to Regev encryption scheme was proposed by Gentry, Peikert and Vaikuntanathan [GPV08]
in 2008, where they designed a dual version of the scheme called Dual Regev. The idea is essen-
tially to swap the rTA and the t = As + e from Regev encryption scheme. The key would then
be pseudorandom based on Lemma 5.2, and the ciphertexts would then be skewed LWE instances.
The overall structure is very similar, but we provide it in this course nonetheless.

6.2.1 Description

As the underlying structure and the idea behind Dual Regev are much similar to Regev encryption
scheme, we directly jump to the formal description of the scheme. The main difference in presen-
tation stems from the fact that all the user now share the same matrix A. We note however, that
this could also be enforced in Regev encryption. We describe the three algorithms KeyGen, Enc,
Dec from Algorithms 6.4, 6.5 and 6.6.

Algorithm 6.4: KeyGen (Dual Regev)
Input: Integers d, q,m, real α, which are functions of the security parameter λ, matrix A ∈
Zm×d
q .

1. r←↩ U({0, 1}m)
2. y← AT r mod qZ

Output: pk = y, sk = r

Algorithm 6.5: Enc (Dual Regev)
Input: Public parameters, Public Key pk = y ∈ Zd

q , Message M ∈ {0, 1}.

1. s←↩ U(Zd
q)

2. e←↩ DZm,αq

3. e′ ←↩ DZ,αq
4. (c1, c2)← (As+ e mod qZ,yT s+ e′ + ⌊q/2⌉M mod qZ) ∈ Zm

q × Zq

Output: (c1, c2)

Algorithm 6.6: Dec (Dual Regev)
Input: Public parameters, Secret Key sk ∈ Zd

q , Ciphertext (c1, c2) ∈ Zm+1
q .

1. u← c2 − cT1 r mod qZ
2. If |u− 0| <

∣∣u± ⌊q/2⌉∣∣, then M ← 0, else M ← 1.

Output: M

Once again, we insist that the last check relies on the fact that u is the representative of the
equivalence class c2 − cT1 s mod qZ that lies in (−q/2, q/2].

82 Go to Contents !

6.2. DUAL REGEV ENCRYPTION SCHEME

y = AT
r A

y

s

+ e

= e′ +M · ⌊q/2⌉

KeyGen Enc

Figure 6.3: Dual Regev public-key encryption scheme

6.2.2 Security Analysis

We now need to ensure that these modification to Regev encryption do not hinder the security of
the scheme. In particular, we need to derive new conditions for the correctness and the semantic
security to hold.

Lemma 6.3 (Dual Regev Correctness)

Let d, q,m be positive integers, and α ∈ (0, 1/(4(m + 1))). Then, for (pk, sk) ←
KeyGen(d, q,m, α,A) and M ∈ {0, 1}, it holds that Dec(sk,Enc(pk,M)) = M except with
probability at most 2−2(m+1), proving that the encryption scheme is correct.

Proof (Lemma 6.3). The proof follows the same structure than that of Lemma 6.1. Let pk, sk
are honestly generated keys and (c1, c2) ← Enc(pk,M) be an honestly generated ciphertext.
Then, there exists s ∈ Zd

q and [eT |e′]T ←↩ DZm+1,αq such that c1 = As + e mod qZ and
c2 = yT s+ e′ + ⌊q/2⌉M mod qZ. As a result, we have

u = c2 − rT c1 mod qZ = yT s+ e′ + ⌊q/2⌉M − rT (As+ e) mod qZ
= −rTe+ e′ + ⌊q/2⌉M mod qZ.

We denote by e∗ = [eT |e′]T and by r∗ = [rT |1]T . By Cauchy-Schwarz inequality, it holds that∣∣r∗Te∗∣∣ ≤∥e∗∥2∥r∗∥2 ≤∥e∗∥2√m+ 1 as r is binary. Then, since e∗ is distributed according
DZm+1,αq, it holds that ∥e∗∥2 ≤ αq

√
m+ 1 except with probability 2−2(m+1) by Lemma 4.9.

We now condition on the event ∥e∗∥2 ≤ αq
√
m+ 1. Then, we have

∣∣rTe∣∣ ≤ αq(m+ 1) ≤ q/4.
When M = 0, we have u = r∗Te∗ and thus |u| ≤ q/4 <

∣∣u± ⌊q/2⌉∣∣ so the retrieved message
during decryption is indeed Dec(sk, (c1, c2)) = 0 as expected. On the contrary, when M = 1,
we have u ∈ [−q/2,−⌊q/2⌉+ q/4]∪ [⌊q/2⌉− q/4, q/2] and thus Dec(sk, (c1, c2)) = 1 as desired.
As a result, we have

P[Dec(sk,Enc(pk,M)) =M]

= P[Dec(sk,Enc(pk,M)) =M |∥e∗∥2 ≤ αq
√
m+ 1]Pe∗∼DZm+1,αq

[∥e∗∥2 ≤ αq
√
m+ 1]

+ P[Dec(sk,Enc(pk,M)) =M |∥e∗∥2 > αq
√
m+ 1]Pe∗∼DZm+1,αq

[∥e∗∥2 > αq
√
m+ 1]

≥ 1 · (1− 2−2(m+1)) + 0

= 1− 2−2(m+1),

as claimed.

The semantic security proof follows the same idea as for Regev semantic security, but with
reversed arguments. It now relies on the LWEd,q,m+1,α assumption as well as the leftover hash
lemma from Lemma 5.2.

! Go to Contents 83

6. PUBLIC-KEY ENCRYPTION FROM LWE

Lemma 6.4 (dual Regev Semantic Security)

Let λ, d, q,m be positive integers such that q is prime and that m ≥ d log2 q + 2λ. Let
α ∈ (0, 1/(4(m+ 1))). Then Dual Regev encryption scheme is (t, ε)-IND-CPA secure where
ε = 2−λ−1 + εLWE(t) with εLWE(t) the hardness bound of LWEd,q,m+1,α. In particular, if
εLWE(t) ≤ 2−λ−1, then the scheme is (t, 2−λ)-IND-CPA secure.

Proof (Lemma 6.4). Again, the proof structure is exactly the same but changing the order of
the arguments. We write it fully for completeness.

Game G0:

Challenger C Adversary A

(pk, sk) = (y = AT r mod qZ), r
r←↩ U({0, 1}m)

pk

Choose M0 ̸=M1

M0,M1

b←↩ U({0, 1})
s←↩ U(Zd

q), (e, e
′)←↩ DZm+1,αq

c1 ← As+ e mod qZ
c2 ← yT s+ e′ + ⌊q/2⌉Mb mod qZ

c1, c2

Choose b′ ∈ {0, 1}
b′A wins if b′ = b

Game G1:

Challenger C Adversary A

(pk, sk) = y,∅
y←↩ U(Zd

q)

pk

Choose M0 ̸=M1

M0,M1

b←↩ U({0, 1})
s←↩ U(Zd

q), (e, e
′)←↩ DZm+1,αq

c1 ← As+ e mod qZ
c2 ← yT s+ e′ + ⌊q/2⌉Mb mod qZ

c1, c2

Choose b′ ∈ {0, 1}
b′A wins if b′ = b

Game G2:

Challenger C Adversary A

(pk, sk) = y,∅
y←↩ U(Zd

q)

pk

Choose M0 ̸=M1

M0,M1

b←↩ U({0, 1})
(u, u′)←↩ U(Zm+1

q)
c1 ← u
c2 ← u′ + ⌊q/2⌉Mb mod qZ

c1, c2

Choose b′ ∈ {0, 1}
b′A wins if b′ = b

Game G3:

84 Go to Contents !

6.2. DUAL REGEV ENCRYPTION SCHEME

Challenger C Adversary A

(pk, sk) = y,∅
y←↩ U(Zd

q)

pk

Choose M0 ̸=M1

M0,M1

b←↩ U({0, 1})
(u, u′)←↩ U(Zm+1

q)
c1 ← u
c2 ← u′

c1, c2

Choose b′ ∈ {0, 1}
b′A wins if b′ = b

We now prove that the games are indistinguishable from one another.
G0 - G1: First, G0 and G1 are statistically close from the leftover hash lemma of Lemma 5.2
because m ≥ d log2 q + 2λ. In particular, this proves that for a ∞-time adversary A against
the IND-CPA game, we would have∣∣AdvG0 [A]−AdvG1 [A]

∣∣ ≤ ∆
(
A,AT r), (A,y)

)
≤ 2−λ−1,

which thus holds true for t-time adversaries as well.

G1 - G2: Then, the games G1 et G2 are computationally indistinguishable under the
LWEn,q,m+1,α assumption. Indeed, if we consider a distinguisher between the views of
the adversary in G1 and G2, we can construct a distinguisher for LWEn,q,m+1,α. Given
an instance ((A, c′1), (y, c

′
2)) of the problem, the reduction defines pk = y, c′1 = c1 and

c2 = c′2 + ⌊q/2⌉Mb mod qZ and proceeds normally for the rest of the game. If c′1 is of the
form As + e mod qZ and c′2 = yT s + e′, the distribution of (c1, c2) is identical as the one in
G1. If they are uniform, the distribution of (c1, c2) is identical to the one in G2. Hence, one
call to the distinguisher between G1 and G2 allows one to solve LWEn,q,m+1,α. In particular,
it proves that for all time-t adversaries A, we have∣∣AdvG1 [A]−AdvG2 [A]

∣∣ ≤ εLWE(t)

G2 - G3: Then, since u′ is uniform and independent of Mb in G2, the distribution of [cT1 |c2]T
is exactly the uniform distribution of Zm+1

q . Hence G2 and G3 are identically distributed.

To conclude, in G3, the advantage of A is 0 because its view is independent of b. The only
possible strategy is guessing. Then, by the triangle inequality, the advantage of A in G0 is at
most

AdvG0 [A] ≤ εLWE(t) + 2−λ−1,

as claimed.

! Go to Contents 85

BIBLIOGRAPHY

] RECAP]

• Regev’s public key encryption scheme allows for encrypting one bit M ∈ {0, 1}. The
keys form an instance of LWE with pk = (A, t = As+ e) and sk = s. The encryption
samples r in {0, 1}m and computes the two-part ciphertext c1 = AT r and c2 = tT r+
⌊q/2⌉M . To decrypt, we compute c2 − cT1 s and return 0 if it is closer to 0 than q/2,
and 1 otherwise.

• The Dual-Regev’s public key encryption scheme swaps the roles of c1 and t. The keys
are pk = y = AT r and sk = r. To encrypt, one samples s ∈ Zd

q and (e, e′) following
DZm+1,αq, and computes c1 = As + e and c2 = yT s + e′ + ⌊q/2⌉M . The decryption
computes c2 − cT1 r and decodes as in Regev’s decryption.

• The Regev and Dual-Regev encryption schemes are IND-CPA based on the LWE
assumption and the leftover hash lemma. They are not IND-CCA.

Bibliography
[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for Hard Lattices and New

Cryptographic Constructions. In STOC, 2008.

[Reg05] O. Regev. On Lattices, Learning With Errors, Random Linear Codes, and Cryptography.
In STOC, 2005.

86 Go to Contents !

7

Signature Schemes

In this chapter we introduce lattice-based signature designs whose security relies on the standard
lattice assumptions that we introduced. Most lattice-based signature schemes follow one of two
main paradigms. The first one is called Hash-and-Sign and was instantiated in [GPV08] using
lattice preimage sampleable trapdoor functions. The idea is to hash the message to the range of a
trapdoor function and use said trapdoor to obtain a short preimage of this hash. An alternative
design paradigm, called Fiat-Shamir with Aborts (FSwA) and proposed by Lyubashevsky [Lyu12],
builds signature on Schnorr-like proofs made non-interactive with the Fiat-Shamir transform. How-
ever, certain peculiarities of lattices requires the addition of a rejection sampling step to preserve
security. In this chapter, we first introduce the FSwA paradigm, before defining the notion of
trapdoor and the Hash-and-Sign paradigm.

Contents
7.1 Fiat-Shamir with Aborts Paradigm . 87

7.1.1 From Identification to Signature . 87
7.1.2 Description . 88

7.2 Lattice Trapdoors . 89
7.2.1 Short Bases and Trapdoor Construction 90
7.2.2 Trapdoor Usage . 90

7.3 GPV Hash-and-Sign Paradigm . 93
7.3.1 Description . 93
7.3.2 Security Analysis . 94

7.4 Standard Model Signatures . 97

7.1 Fiat-Shamir with Aborts Paradigm
The Fiat-Shamir paradigm is another popular signature design which is not specific to lattice
constructions. The name stems from the work of Fiat and Shamir [FS86] who gave a generic
transform to turn a identification Sigma protocol into a signature scheme in the random oracle
model. A very popular framework on which is inspired EdDSA [BDL+11] are Schnorr Sigma
protocol which can then be turned into signature using the Fiat-Shamir transform. One can use
a lattice equivalent of Schnorr’s Sigma protocol on lattices but the peculiarities of lattices make
it insecure without care. A solution proposed by Lyubashevsky [Lyu12] was to use a key tool
from probability theory called rejection sampling which allows to patch the security holes in lattice
Schnorr’s protocol. This is at the expense of rejection, as the name suggests, which is why the
lattice name of the Fiat-Shamir paradigm is Fiat-Shamir with Aborts. We start by presenting the
high level idea of identification Sigma protocols and the Fiat-Shamir transform before presenting
the signature scheme of [Lyu12].

7.1.1 From Identification to Signature
An identification Sigma protocol is a protocol in 3 exchanges between a prover P trying to identify
and a verifier V. The stages of such protocols are usually referred to as Commitment, Challenge

! Go to Contents 87

7. SIGNATURE SCHEMES

and Response. The prover holds a secret key sk and aims at convincing V of its identity who holds
the corresponding public key pk. The prover P starts by sending a commitment CMT to the
verifier, allowing them to commit to their identity. The verifier then sends a random challenge
CH so that only the person with the correct identity should be able to reply correctly. In the
third stage, P computes the correct response RSP to the commitment CMT and challenge CH.
If the triplet (CMT,CH,RSP) verifies a certain property which is specific to each identification
protocol, then V accepts the proof of identification. We summarize it in Figure 7.1.

Prover P(pk, sk) Verifier V(pk)
Computing commitment CMT

CMT
Choose CH uniformly
in {0, 1}λCH

Computing response RSP
RSP

Given (CMT,CH,RSP)
accepts or not

Figure 7.1: Generic Identification Sigma Protocol

In 1986, Fiat and Shamir [FS86] proposed a transform to turn such identification Sigma pro-
tocols into a signature scheme. The signature actually corresponds to what the prover P exe-
cutes, and by choosing the challenge CH as the hash output of CMT and the message M , i.e.,
CH ← H(CMT∥M). When H is modeled as random oracle, the challenge is indeed uniformly
random. The signature on the message M is then (CMT,RSP). To verify the signature, one can
compute CH = H(CMT∥M) and verify that (CMT,CH,RSP) is a valid proof of identification.
The security of the signature then directly relies on the security of the identification protocol and
on the random oracle model. The advantage of such signature schemes is that they do not rely on
complex trapdoor functions.

7.1.2 Description

Rejection Sampling

Before describing the scheme, we do a quick reminder on rejection sampling. Let Ds and Dt

the density functions of two probability distributions called the source and target distributions.
The objective is to use a sampler for the source distribution to produce samples for the target
distribution. In a context of signature, the source distribution may for example depend on the
secret key which is undesirable. We then use it to produce elements following the target distribution
which is independent of all secret data.

For that, assume that there exists M > 1 such that for all x, Dt(x) ≤ M · Ds(x), which can
be written as RD∞(Dt∥Ds) ≤ M . Then, the distribution obtained by sampling x from Ds and
returning it with probability Dt(x)/(M ·Ds(x)) corresponds exactly to the distribution Dt. Hence,
by sampling from Ds and rejecting with the correct probability, we can ensure that the output
follows Dt. The parameter M is called the repetition rate which somewhat quantifies the number
of iterations needed before actually outputting a sample.

We can also perform inexact rejection in order to relax the constraint on Ds,Dt. Assuming
that there exists M > 1 and ε ∈ (0, 1) such that

Px∼Dt
[Dt(x) ≤MDs(x)] ≥ 1− ε.

Then, by rejecting samples with probability min(1,Dt(x)/(M ·Ds(x))), one can show, e.g., [Lyu12],
that the output will be statistically close to Dt up to a loss linked to ε.

Lyubashevsky’s Signature Scheme

We describe the signature scheme with the KeyGen,Sign, and Verify algorithms in Algorithms 7.1, 7.2
and 7.3. We let H be a hash function from Zd

q × {0, 1}∗ to {−1, 0, 1}k.

88 Go to Contents !

7.2. LATTICE TRAPDOORS

Algorithm 7.1: KeyGen (Fiat-Shamir with Aborts)
Input: Integers d, q,m, k, and s > 0 a Gaussian parameter.

1. S←↩ U({−1, 0, 1}m×k)
2. A←↩ U(Zd×m

q)
3. B = AS mod qZ

Output: pk = (A,B), sk = S

Algorithm 7.2: Sign (Fiat-Shamir with Aborts)
Input: Public parameters, Public Key pk = (A,B) ∈ Zd×m

q ×Zd×k
q , Secret Key sk = S ∈ Zm×k,

Message M ∈ {0, 1}∗.

1. y←↩ DZm,s.
2. c← H(pk∥Ay mod qZ∥M) ∈ {−1, 0, 1}k.
3. z = Sc+ y
4. Accepts z with probability P (z), otherwise restart.

Output: sig = (z, c)

Algorithm 7.3: Verify (Fiat-Shamir with Aborts)
Input: Public parameters, Public Key pk = (A,B) ∈ Zd×m

q × Zd×k
q , Signature sig = (z, c) ∈

Zm × Zk, Message M ∈ {0, 1}∗.

1. b← (c = H(pk∥Az−Bc mod qZ∥M)) ∧ (∥z∥2 ≤ s
√
m)

Output: b ∈ {0, 1}

where the probability P (z) is here to ensure that z is statistically close to DZm,s, that is

P (z) = min

(
1,

DZm,s(z)

M · DZm,s,Sc(z)

)
Indeed, the source distribution corresponds to Sc + DZm,s which by Lemma 7.5 is DZm+Sc,s,Sc.
Yet, since Sc ∈ Zm, the coset Zm + Sc is exactly Zm itself. So the source distribution is indeed
DZm,s,Sc. The correctness holds due to the fact that z is then close toDZm,s, and because Az−Bc =
Ay −ASc − Bc = Ay mod qZ. Hence, c = H(pk∥Az − Bc mod qZ∥M) for honestly generated
signatures.

Remark 7.1 (Security of Fiat-Shamir with Aborts Signature)

We do not provide the EUF-CMA security proof of the signature scheme as it involves
rather technical tools such as the generalized forking lemma. Nevertheless, this scheme can
be proven secure in the random oracle model based on the hardness of SISd,m,q,β and the
inexact rejection sampling argument.

The presence of rejection sampling seems artificial without the details of the security proof.
And yet, this step is essential. Indeed, we will show in TD 3 that without rejection, it is easy
to produce valid signature without knowledge of the secret key or to recover the secret key from
sufficiently many signatures.

7.2 Lattice Trapdoors
The first method for constructing digital signatures over lattices uses the notion of trapdoor func-
tions. A trapdoor function f is a function that is efficiently computable, but that is difficult to
invert unless given a secret trapdoor information s. More precisely, the signature design relies on
the possibility of sampling preimages using the trapdoor s, meaning that for a syndrome y the
user can use s to sample from a distribution over f−1⟨{y}⟩, thus introducing randomness in the
preimage finding process. The preimage x then corresponds to the signature of y, which can be
verified by checking that f(x) = y and that x looks like the correct distribution. This approach is
rather generic and not related to lattices. We now present how to construct preimage sampleable
trapdoor functions from lattices.

! Go to Contents 89

7. SIGNATURE SCHEMES

7.2.1 Short Bases and Trapdoor Construction
We start with a generic approach and identify its limitations. A first idea to achieve the function-
alities we are aiming for is to have a lattice L along with a short basis B of this lattice. Given
an element y in the ambient space SpanR(L), one could sample x from the discrete Gaussian dis-
tribution DL,s,y using the basis B and output x as the preimage. For that, we can use Klein’s
sampler (Algorithm 4.1) which, according to Theorem 4.2, produces samples statistically close to
DL,s,y if s ≥ ηε(Zd)

∥∥GSO(B)
∥∥
∞. Then, one could easily check if x is in L given a bad basis of L,

and check that ∥x− y∥2 is short. The security would then rely on the hardness of CVPγ . This
approach perfectly satisfies the requirements we placed at the outset at one exception. We need
to efficiently generate a strong lattice along with a short basis. In particular, what we aim for
in lattice cryptography is to use random lattices. A good candidate is a q-ary lattice like L⊥q (A)
described in Definition 2.3.

Let us then consider a lattice L = L⊥q (A) for a matrix A ∈ Zd×m
q . If we are able to produce

a short basis of L⊥q (A), then we would be able to produce discrete Gaussian samples over this
lattice. Unfortunately, given a random matrix A, finding a short basis, e.g., whose vectors have
norm less than β, is exactly solving (many times) the SISd,m,q,β problem, which is assumed to be
infeasible. In 2009, Alwen and Peikert [AP09] proposed a way to conjointly generate the matrix
A and a short basis BA of L⊥q (A) so that the resulting A is statistically close to uniform.

Lemma 7.1 (Short Bases for Random Lattices)

There exists a probabilistic polynomial-time algorithm TrapGen taking as input d,m, q such
that q ≥ 2 and m ≥ Ω(d log2 q) and that outputs A ∈ Zd×m

q and a basis BA of L⊥q (A) such
that ∆(A, U(Zd×m

q)) ≤ 2−Ω(d) and
∥∥GSO(BA)

∥∥
∞ ≤ O(

√
d log2 q).

We present here the simplified description of the algorithm TrapGen. The idea is to use the
leftover hash lemma to generate the columns of A along with the rows (and columns) of BA.
Assume that we have constructed A ∈ Zd×m

q and BA ∈ Zm×m such that ABA = 0 mod qZ. We
now add a column to A and complete the basis accordingly.

1. Sample a random vector r←↩ U({0, 1}m).

2. Update the matrix A′ = [A|Ar] mod qZ

3. Update the trapdoor BA′ =

[
BA r
0 −1

]
.

By Lemma 5.2, it holds that A′ is statistically close to uniform. Then, by construction, the
new column of BA′ is linearly independent from the others and we maintain the equality A′BA′ =
0 mod qZ. It is then possible to re-randomize the trapdoor BA while preserving the quality of the
basis with a random unimodular matrix. It is also possible to change the basis in a way that it
is independent of the matrix A. For that, we can use BA to sample sufficiently many Gaussian
vectors so as to find a set of linearly independent ones that can be used to construct a new basis
(albeit larger than the original one).

There are other ways of generating a close-to-uniform matrix A along with a short basis of
L⊥q (A). A more efficient way was proposed in 2012 by Micciancio and Peikert [MP12]. We will see
this method in TD 4 .

7.2.2 Trapdoor Usage
The motivation behind lattice trapdoors was to design signature schemes following the framework
of [GPV08], which we present in Section 7.3. Trapdoor functions are however much broader than
their use in signature schemes. We have seen for example that thanks to Klein’s sampler, it
is possible to sample discrete Gaussian vectors. These vectors can be used as side information
allowing one to solve the LWE, SIS and ISIS problems, which remain hard without knowledge of
the this trapdoor. Trapdoor functions have also been used in the design of advanced forms of
signatures like group or blind signatures, but they can also be found in other constructions like
vector commitment schemes, etc. Here, we only focus on the use of the trapdoor in solving LWE,
SIS and ISIS.

90 Go to Contents !

7.2. LATTICE TRAPDOORS

Solving SIS

Assume that we are given a matrix A ∈ Zd×m
q that is statistically close to a uniform matrix, and a

trapdoor BA ∈ Zm×m, i.e., short basis of L⊥q (A). Let s ≥
∥∥GSO(BA)

∥∥
∞ × ηε(Z

m), where ηε(Zm)
is the smoothing parameter of Zm. Then, it holds that s is a large enough to use Theorem 4.2. By
defining β = s

√
m, a challenger knowing BA can efficiently solve SISd,m,q,β on the matrix A.

Lemma 7.2 (Solving SIS with Trapdoors)

Let d, q,m be positive integers with q prime and m ≥ d. Let A ∈ Zd×m
q be primitive (i.e.,

surjective or such that AZm
q = Zd

q) and BA be a basis of L⊥q (A). We let s =
∥∥GSO(BA)

∥∥
∞ ·√

ln(2m(1 + ε−1)/π) for some (negligible) ε ∈ (0, 1). Then, there exists an adversary A
taking A and BA which solves SISd,m,q,β with

AdvSIS[A] ≥ 1−

 qd

(1− ε)sm
+ 2−2m

1

2

((
1 + ε/m

1− ε/m

)m

− 1

) ,

and where β = s
√
m. In particular, when m ≥ (d log2 q + λ)/ log2 s, the advantage is

overwhelming when ε is negligible.

Proof (Lemma 7.2). We construct the adversary A as follows. The adversary simply runs x←
Klein(BA, s,0), and outputs x. First, by Lemma 4.3, it holds that s ≥ ηε(Zm)

∥∥GSO(BA)
∥∥
∞.

Hence, by Theorem 4.2, the adversary is indeed polynomial time. We now have to check that
x is indeed a valid solution. For that we will use the properties of the statistical distance (for
example Lemma 1.4), as well as standard results on Gaussian distributions. We define δ =
∆(Klein(BA, s,0),DL⊥

q (A),s), which is bounded by (((1 + ε/m)/(1− ε/m))m − 1)/2 according
to Theorem 4.2. First, we naturally have x ∈ L⊥q (A) which shows Ax = 0 mod qZ.
Non-triviality. We first check that x is non-zero. We have the following inequalities. Let us
first assume that x follows DL⊥

q (A),s. We can now use Lemma 4.6 if we are able to show that
s ≥ ηε′(L) for some ε′ ∈ (0, 1) and if we are able to compute Vol L⊥q (A).

We have assumed that q is prime and that A is primitive, i.e., AZm
q = Zd

q . We note that
the matrices A generated by TrapGen in Lemma 7.1 are primitive. In this case, this is enough
to argue that Vol L⊥q (A) = qd. Then since

∥∥GSO(BA)
∥∥
∞ ≥ λGSO(L⊥q (A)), Lemma 4.3 gives

that s ≥ ηε(L⊥q (A)). As a result, we have by Lemma 4.6 that

2
−H∞(DL⊥

q (A),s
) ≤ qd

(1− ε)sm
.

If q is not prime or A not primitive, we can use [PR06, Lem. 2.11] instead of Lemma 4.6
which gives H∞(DL⊥

q (A),s) ≥ m− log2
1+ε
1−ε if s ≥ 2ηε(L⊥q (A)). In any case, this reasoning on

the min-entropy shows the Gaussian sample is zero with probability at most qd

(1−ε)sm .
Norm Bounds. We now verify the bounds. It holds that

Px∼DL⊥
q (A),s

[∥x∥2 > β] ≤ 2−2m

by Lemma 4.9.
Advantage. We can then bound the advantage of A. It holds that

Px∼Klein(BA,s,0)[x = 0 ∨∥x∥2 > β] ≤ Px∼DL⊥
q (A),s

[x = 0 ∨∥x∥2 > β] + δ

≤ Px∼DL⊥
q (A),s

[x = 0] + Px∼DL⊥
q (A),s

[∥x∥2 > β] + δ

≤ qd

(1− ε)sm
+ 2−2m + δ.

As a result, we directly obtain that

AdvSIS[A] ≥ 1−

(
qd

(1− ε)sm
+ 2−2m + δ

)
.

The term qd/sm is less than 1− 1/poly(d) if and only if m ≥ (logs q)/(1− 1/poly(d)).

! Go to Contents 91

7. SIGNATURE SCHEMES

Solving LWE

We now see that one can efficiently solve the decisional variant of LWEd,q,m,Ds,De
on the matrix

AT , provided that De is sufficiently small to enable distinguishing between DT
L⊥

q (A),sD
m
e from

uniform. The idea of this solver actually rely on the following reduction from LWEd,q,m,Ds,De to
SISd,m,q,β .

Lemma 7.3 (Reduction from LWE to SIS)

Let d, q,m be positive integers, Ds a distribution over Zd, De a distribution over Zm, and
β a positive real. Assume that De and m are such that Pe∼Dm

e
[∥e∥2 > γ] ≤ ε, for γ ∈

[0, q/(4β)] and ε ∈ [0, 1 − 1/poly(d)). Then, there exists a polynomial-time reduction from
LWEd,q,m,Ds,De

to SISd,m,q,β .

Proof (Lemma 7.3). See TD 2

Trapdoors can also be used to solve the search variant of LWE. If one is given a short enough
basis of L⊥q (A), one can recover the error vector using linear algebra, and then solve sLWE.

Lemma 7.4 (Solving LWE with Trapdoors)

Let d, q,m be positive integers, Ds a distribution over Zd, De a distribution over Zm. Assume
that De and m are such that Pe∼Dm

e
[∥e∥2 > γ] ≤ ε, for γ > 0 and ε negligible. Let A ∈ Zd×m

q

and BA be a basis of L⊥q (A) such that ∥BA∥∞ < q/(2γ). Then, there exists an adversary
taking A and BA and t = AT s + e mod qZ for s ∼ Ds and e ∼ Dm

e , which outputs s in
polynomial-time.

Proof (Lemma 7.4). The adversary A, first computes c = BT
At mod qZ, where c is then

the representative of BT
At mod qZ with coefficients in (−q/2, q/2). It then computes e∗ =

(BA)−T c in the real field. It then recovers s∗ by using linear algebra over Zq to solve the
system AT s∗ = t− e∗ mod qZ. It sends s∗ as the output.

Let us now analyze the reduction. We have c = BT
AAT s + BT

Ae mod qZ = BT
Ae mod qZ.

Now, we need to find the unique representative of BT
Ae mod qZ in (−q/2, q/2)m. We show that

this unique representative is exactly BT
Ae itself (over Z), meaning that there is no reduction

wrap-around modulo q. For that, let us look at
∥∥BT

Ae
∥∥
∞. Let i be in J1,mK. It holds that∣∣∣[BT

Ae]i

∣∣∣ = ∣∣∣[BA]Ti e
∣∣∣ ≤∥∥[BA]i

∥∥
2
∥e∥2 ,

where [BA]i is the i-th column of BA, and where the inequality stems from Cauchy-Schwarz.
Then,

∥∥[BA]i
∥∥
2

is by definition bounded by ∥BA∥∞ < q/(2γ). Then, with overwhelming
probability of at least 1− ε, it holds that∥e∥2 ≤ γ. Hence, with probability at least 1− ε, one
has

∥∥BT
Ae
∥∥
∞ < q/2 and thus that c = BT

Ae over Z.
Then, e∗ = e, which means that t − e∗ mod qZ = AT s mod qZ and as there is only one

such s, s∗ = s.

One can also solve sLWE on the parity check matrix of A by using the duality results from [MM11]
using the solver for ISIS that we will see just now. Other methods are however possible depending
on the form of the trapdoor, e.g., [MP12].

Résoudre ISIS

The idea is very similar to that of solving SIS but by adjusting the Gaussian sampling step. The
inhomogeneous version ISIS corresponds to finding a short vector in Lu

q (A) = {x ∈ Zm : Ax =

u mod qZ}. This set is actually a coset of L⊥q (A), meaning that Lu
q (A) = x∗ + L⊥q (A) for any x∗

verifying Ax∗ = u mod qZ. This situation corresponds to the exhaustive solving of linear systems
or differential equations. Indeed, x∗ represents a particular solution, to which we add the set of
homogeneous solutions (L⊥q (A)). As a result, we just need to be able to sample a discrete Gaussian

92 Go to Contents !

7.3. GPV HASH-AND-SIGN PARADIGM

over any coset to be able to solve ISIS for any u ∈ Zd
q . To do so, we just make an observation on

discrete Gaussian distributions, which we formalize in the following lemma.

Lemma 7.5 (Shifted Discrete Gaussian)

Let d be a positive integer, and S ⊂ Rd a countable set. Let s > 0 and c,a ∈ Rd. It holds
that a+DS,s,c−a = DS+a,s,c.

Proof (Lemma 7.5). We denote by P the distribution a+DS,s,c−a. For all x∗ ∈ Rd, it holds
that

Px∼P [x = x∗] = Py∼DS,s,c−a [y = x∗ − a] = 1S(x
∗ − a)

ρs,c−a(x
∗ − a)

ρs,c−a(S)
.

Yet, we also have ρs,c−a(x− a) = ρs,c(x− a+ a) = ρs,c(x) pour tout x ∈ Rd, et ρs,c−a(S) =
ρs,c(S + a). Cela prouve donc que

Px∼P [x = x∗] = 1S(x
∗ − a)

ρs,c(x
∗)

ρs,c(S + a)
= 1S+a(x

∗)
ρs,c(x

∗)

ρs,c(S + a)
= Px∼DS+a,s,c [x = x∗].

On en conclue donc que P = DS+a,s,c.

The procedure to solve ISIS is then as follows. First, compute x0 ∈ Zm such that Ax0 =
u mod qZ using linear algebra (without constraints on the size of x0). Then, sample x1 using
Klein(BA, s,−x0) and compute x = x0 + x1. Since x1 is statistically close to DL⊥

q (A),s,−x0
,

Lemma 7.5 directly gives that x is statistically close to DLu
q (A),s. In particular, we have Ax =

u mod qZ, and by Lemma 4.9, since s ≥ ηε(L⊥q (A)), we get ∥x∥2 =
∥∥x1 − (−x0)

∥∥
2
≤ s
√
m.

Remark 7.2

An immediate corollary of Lemma 7.5 is that the conditional probability distribution of
x ∼ DZm,s given Ax = u mod qZ is exactly DLu

q (A),s. Formally:

∀x∗ ∈ Rm,Px∼DZm,s
[x = x∗|Ax = u mod qZ] = Px∼DLu

q (A),s
[x = x∗]

This result is for example stated in [GPV08, Lem. 5.2].

7.3 GPV Hash-and-Sign Paradigm
The Hash-and-Sign signature paradigm is not specific to lattices. What it describes is the family
of signature schemes for which the signing procedure essentially consists in hashing the message
to a particular hash space, and applying (more or less in black box) a signature procedure on this
message digest. The is for example how the RSA [RSA78] signature scheme works in PKCS#1.5.
The version from PKCS#2.1, called RSA-PSS (for RSA Probabilistic Signature Scheme), can also
be seen as a hash-and-sign signature, albeit slightly more complex in essence. The ECDSA [JMV01]
is also considered hash-and-sign signature schemes. Over lattices, the first hash-and-sign signature
that was proposed was called NTRUSign (or PASS) [HS01] which was broken a year later. In
2008, Gentry, Peikert and Vaikuntanathan [GPV08] proposed a framework to design sEUF-CMA
signatures in the random oracle model based on preimage sampleable trapdoor functions, and
instantiated this framework over lattices. This is to date one of main signature paradigm in
lattice-based cryptography. We now describe an instantiation of the GPV framework with trapdoor
functions over lattices.

7.3.1 Description
We describe the signature scheme using the algorithm TrapGen, which results in quite large pa-
rameters. There has been more efficient instantiations of the GPV framework, but they all follow
more or less the same structure by just changing the trapdoor generation mechanism (and the
accompanying preimage sampler). We describe the KeyGen,Sign, and Verify algorithms in Algo-
rithms 7.4, 7.5 and 7.6.

! Go to Contents 93

7. SIGNATURE SCHEMES

Algorithm 7.4: KeyGen (GPV)
Input: Integers d, q,m, with q prime and m = Ω(d log2 q), and s > 0 a Gaussian parameter.

1. (A,BA)← TrapGen(d,m, q) ∈ Zd×m
q × Zm×m

Output: pk = A, sk = BA

Algorithm 7.5: Sign (GPV)
Input: Public parameters, Public Key pk = A ∈ Zd×m

q , Secret Key sk = BA ∈ Zm×m, Message
M ∈ {0, 1}∗.

1. If M was already queried, let x ∈ Zm be the corresponding signature
2. Else Solve the equation Ac = H(M) mod qZ for c, and set x← c+ Klein(BA, s,−c)

Output: sig = x

Algorithm 7.6: Verify (GPV)
Input: Public parameters, Public Key pk = A ∈ Zd×m

q , Signature sig = x ∈ Zm, Message
M ∈ {0, 1}∗.

1. b← (Ax = H(M) mod qZ) ∧ (∥x∥2 ≤ s
√
m)

Output: b ∈ {0, 1}

The idea is to hash the message with a cryptographic hash function, and compute a short
Gaussian preimage of H(M) by A. In this presentation of the scheme, the signature is called
stateful. This means that the signer must keep track of a state among all the emitted signatures.
Here the state essentially keeps track of all the messages that have been queried for signature. The
reason for it is to avoid emitting two different signature on the same message, which would allow
a user to solve SIS on the public key matrix A. Indeed, assume A has obtained two signatures
x ̸= x′ on a message M such that Verify(A,x,M) = Verify(A,x′,M) = 1. Then, one would obtain
A(x− x′) = 0 mod qZ and

∥∥x− x′
∥∥
2
≤ 2s

√
m for x− x′ ̸= 0. This stateful variant can be turned

into a stateless variant, where there is no longer a need to keep track of state, by simply adding salt
in the hash. One would then sample x for the syndrome H(r∥M) where r is a uniformly random
bitstring in {0, 1}k. The value of k is used to adjust the probability of finding collisions on the
hash function, i.e., finding r ̸= r′ such that H(r∥M) = H(r′∥M). Typically, a conservative choice
would be k = 2λ where λ is the security parameter. Additionally, in this version, the salt r must
be provided in addition to the preimage to allow for verification. Hence, the signature would be
sig = (r,x), which is only k bits larger (typically 256 bits).

For clarity, we define the algorithm SamplePre taking as input BA,A, s,y and that performs
the following: solve the equation Ax0 = y mod qZ, sample x1 = Klein(BA, s,−x0) and output
x = x0+x1. This algorithm thus samples a preimage of y for the matrix A following a distribution
close to DLy

q (A),s.

7.3.2 Security Analysis

Let us now prove the security requirements for the signature scheme. We need to verify that the
scheme is both correct and EUF-CMA secure. It turns out that the scheme can be proven to be
strong EUF-CMA secure. The correctness directly relies on the use of trapdoors to solve ISIS.
Here, we use the secret trapdoor BA to solve the ISIS instance (A,H(M)). The signatures are
thus statistically close to DLH(M)

q (A),s
proving that b = 1 for honestly generated signatures.

We focus on proving the sEUF-CMA security. For that we will need the following technical
lemma which argues that the signatures do not leak information on the trapdoor BA. This is
called the simulation result of the preimage sampler, and it is necessary in ensuring that the
scheme is secure. If signatures leak an ever so slight amount of information on BA, we have to
consider the fact that an adversary may see a lot of signatures. Typically, NIST requirements state
that a signature scheme should be secure for at least Q = 264 emitted signatures. This is a very
conservative choice but it should be considered when deriving the parameters, as we will see in the
security proof.

94 Go to Contents !

7.3. GPV HASH-AND-SIGN PARADIGM

Lemma 7.6 (Simulating Signatures)

Let d, q,m be positive integers with q prime and m = Ω(d log2 q). Let s > O(
√
d log2 q) ·√

ln(2m(1 + ε−1)/π) a Gaussian parameter for some ε ∈ (0, 1). Let (A,BA) ←
TrapGen(d, q,m). We define the following distributions.

P0: u←↩ U(Zd
q), and x← SamplePre(BA,A, s,u). Output (x,u).

P1: x←↩ DZm,s, u← Ax mod qZ. Output (x,u).

Then, it holds that for all (x,u) ∈ Supp(P0) = Supp(P1), we have P0(x,u) ∈ [δ1, δ2]P1(x,u),
with

δ1 =
1− ε
1 + ε

∼
ε→0+

1− 2ε and δ2 =

(
1 + ε/m

1− ε/m

)m
1 + ε

1− ε
∼

ε→0+
1 + 4ε

In particular, it gives ∆(P0,P1) ≤ (δ2 − 1)/2 ≈ 2ε.

Proof (Lemma 7.6). First of all, because of the condition on s, we can combine Lemmas 4.3
and 7.1 to obtain that s ≥ ηε(Zm)

∥∥GSO(BA)
∥∥
∞ ≥ ηε(L

⊥
q (A)). In P0, if x0 denotes a solution

of Ax0 = u mod qZ computed in SamplePre for a fixed u, then x1 = Klein(BA, s,−x0) verifies

Px1∼Klein(BA,s,−x0)[x1 = x⋆
1] ∈

[
1,

(
1 + ε/m

1− ε/m

)m
]
· DL⊥

q (A),s,−x0
(x⋆

1),

which is a stronger version of Theorem 4.2. Indeed, we here obtain a relation on
the marginal distributions and not simply the statistical distance. Then, we have
SamplePre(BA,A, s,u)(x

⋆) ∈ [1, δ]DLu
q (A),s(x

⋆) by Lemma 7.5, where δ = (1 + ε/m)m/(1 −
ε/m)m. Note that this is conditioned on a specific value for u. Considering the distribution
of u, we get

P(x,u)∼P0
[(x,u) = (x⋆,u⋆)] = Pu∼U(Zd

q)
[u = u⋆] · Pu,x∼SamplePre(BA,A,s,u)[x = x⋆|u = u⋆]

= q−d · SamplePre(BA,A, s,u
⋆)(x⋆)

∈ [1, 1 + ε′]q−d · DLu⋆
q (A),s(x

⋆).

We now look at P1. We have the following equalities.

P(x,u)∼P1
[(x,u) = (x⋆,u⋆)] = Px∼DZm,s

[Ax = u⋆ mod qZ] · Px∼DZm,s
[x = x⋆|Ax = u⋆ mod qZ]

= Px∼DZm,s
[Ax = u⋆ mod qZ] · Px∼DLu⋆

q (A),s
[x = x⋆]

= Px∼DZm,s
[Ax = u⋆ mod qZ] · DLu⋆

q (A),s(x
⋆),

where the second equality holds from Remark 7.2. We then have to evaluate Px∼DZm,s
[Ax =

u∗ mod qZ]. Since A is generated from TrapGen, it holds that A is primitive, i.e., AZm
q = Zd

q .
Using Lemma 4.5 on L = Zm and L′ = L⊥q (A), and noticing that Zm/L⊥q (A) is isomorphic
to Zd

q by the mapping e+ L⊥q (A) 7→ Ae mod qZ, we have that

Px∼DZm,s
[Ax = u⋆ mod qZ] ∈

[
1− ε
1 + ε

,
1 + ε

1− ε

]
· q−d.

It directly yields

P(x,u)∼P1
[(x,u) = (x⋆,u⋆)] ∈

[
1− ε
1 + ε

,
1 + ε

1− ε

]
q−d · DLu⋆

q (A),s(x
⋆).

Combining both yields P0(x,u) ∈ [δ1, δ2]P1(x,u) for

δ1 =
1− ε
1 + ε

and δ2 =

(
1 + ε/m

1− ε/m

)m
1 + ε

1− ε

The statistical distance directly follows by definition.

! Go to Contents 95

7. SIGNATURE SCHEMES

We can now prove the sEUF-CMA security of the GPV signature scheme (with this instantiation
of trapdoors and preimage sampler). We refer to [GPV08] for the more general proof.

Theorem 7.1 (GPV Signature sEUF-CMA Security)

Let d, q,m be positive integers with q prime and m = Ω(d log2 q). Let s > O(
√
d log2 q) ·√

ln(2m(1 + ε−1)/π) a Gaussian parameter for some ε ∈ (0, 1). Let Q be the maximal
number of signatures per key pair. Then, the GPV signature scheme is (t, δ)-sEUF-CMA
secure in the Random Oracle Model where

δ ≤ δQ2 ·

(
2−Ω(d) + 2

qd

sm
+

εSIS(t)

1− 2−2m

)
,

with εSIS(t) the hardness bound of SISd,m,q,β for β = 2s
√
m and

δ2 =

(
1 + ε/m

1− ε/m

)m
1 + ε

1− ε
∼

ε→0+
1 + 4ε

Proof (Theorem 7.1). Let A be a t-time adversary against the sEUF-CMA security of the
signature scheme. We denote by B the challenger which answers both the signing queries and
random oracle queries. Additionally, we assume that A has made a random oracle query on
the message M⋆ that it outputs a forgery on. We first proceed by game hops to modify the
sEUF-CMA game, and in the last game we use SIS to bound the advantage of the adversary.
We define the following games between A and B by only looking at the setup and queries
stages. The challenger B maintains two tables, one TRO for the random oracle queries and
one for the signature queries TS .
Game G0. We recall the setup and queries in the original sEUF-CMA game.

• Setup. B runs (A,BA)← KeyGen(d, q,m, s) and sends pk = A to A.

• Random Oracle Queries. On input M ∈ {0, 1}∗, B checks if M appears in TRO. If so,
it directly outputs the syndrome u from TRO corresponding to M . If not it samples
u←↩ U(Zd

q) and stores the key-value pair (M,u) in TRO before sending u to A.

• Signing Queries. On input M ∈ {0, 1}∗, B first checks if it appears in TS . If so it
outputs the x from TS corresponding to M . If not it proceeds as follows. If M appears
in TRO, it gets the corresponding hash u, and if not it samples u ←↩ U(Zd

q) and stores
(M,u) in TRO. Then it runs the rest of the signing algorithm by computing x ←
SamplePre(BA,A, s,u). It then stores (M,x) in TS and sends x to A.

Game G1. We change the original game by simulating the signatures and random oracle
queries, by relying on Lemma 7.6. The setup stage is identical to that of G0.

• Random Oracle Queries. On input M ∈ {0, 1}∗, B checks if M appears in TRO. If so,
it directly outputs the syndrome u from TRO corresponding to M . If not it samples
x ←↩ DZm,s, and computes u = Ax mod qZ. It then stores (M,u) in TRO, and (M,x)
in TS before sending u to A.

• Signing Queries. On input M ∈ {0, 1}∗, B first checks if it appears in TS . If so it
outputs the x from TS corresponding to M . If not, this means that M does not appear
in TRO either. It thus samples x ←↩ DZm,s, and computes u = Ax mod qZ. It then
stores (M,u) in TRO, and (M,x) in TS before sending x to A.

Game G2. We finish by simulating the public key A. Concretely, as the trapdoor is no longer
used to generate signatures, we can sample the public key A uniformly without needing a
trapdoor.

• Setup. B samples A←↩ U(Zd×m
q) and sets pk = A before sending it to A.

We now argue why these games are indistinguishable to the adversary. This comes down to
studying the distribution of the view of the adversary which is composed of pk, the syndromes
obtained from random oracle queries, and the queried signatures.

96 Go to Contents !

7.4. STANDARD MODEL SIGNATURES

G0-G1. The view of A only changes on the syndromes and preimages. In particular, the pairs
(x,u) follow P0 in G0 and P1 in G1, where distributions P0,P1 are that of Lemma 7.6. The
latter lemma gives

AdvG0

sEUF−CMA[A] ≤ δ
Q
2 AdvG1

sEUF−CMA[A],

where δ2 =
(

1+ε/m
1−ε/m

)m
1+ε
1−ε ∼

ε→0+
1 + 4ε.

G1-G2. The view of A only changes on the public key. By Lemma 7.1, it directly holds that
A is statistically close to uniform and thus that

AdvG1

sEUF−CMA[A] ≤ AdvG2

sEUF−CMA[A] + 2−Ω(d)

Bounding advantage in G2. We now bound the advantage of A in G2 by exploiting the forgery
to produce a SIS solution on the matrix A. More precisely, after having queried at most Q
signatures, A outputs (M⋆,x⋆) such that Verify(A,x⋆,M⋆) = 1 and (M⋆,x⋆) ̸= (Mi,xi) for
all the signature queries i ∈ J1, QK. Because M⋆ has been queried to the random oracle,
the must exist pairs (M⋆,u′) and (M⋆,x′) in TRO and TS respectively. Then, B computes
x = x⋆ − x′ and outputs it as a solution to SISd,q,m,β for the instance A (which is indeed
uniform as needed per Definition 5.1).

If M⋆ was queried to the signature oracle, there must exist i ∈ J1, QK such that Mi = M⋆

and xi = x′. Because (M⋆,x⋆) ̸= (Mi,xi), we directly have x⋆ ̸= x′ and thus x ̸= 0. Then,
because x⋆ is a valid signature on M⋆, we have ∥x⋆∥2 ≤ s

√
m. Moreover, Lemmma 4.9

yields
∥∥x′∥∥

2
≤ s
√
m with probability at least 1 − 2−2m. Conditioned on this event, we have

∥x∥2 ≤ 2s
√
m = β. Finally, it holds that Ax = Ax⋆ − u′ mod qZ = 0 mod qZ. Hence x is a

valid solution of SISd,q,m,β .
If M⋆ was never queried to the signature oracle, then A never received the corresponding

x′. However, the entropy of x′ knowing u′ = Ax′ mod qZ is at least H∞(x′) − d log2 q ≥
m log2 s− d log2 q− 1 by Lemma 4.6. So the probability that x′ = x⋆ is at most 2qd/sm. The
other conditions are verified the same way as above.

We thus have

AdvSIS[B] = Px′ [
∥∥x′∥∥

2
≤ s
√
m]Px′ [x solution|

∥∥x′∥∥
2
≤ s
√
m]

+ Px′ [
∥∥x′∥∥

2
> s
√
m]Px′ [x solution|

∥∥x′∥∥
2
> s
√
m]

≥ (1− 2−2m)(AdvG2

sEUF−CMA[A]− 2qd/sm)

which yields

AdvG2

sEUF−CMA[A] ≤ 2
qd

sm
+ εSIS(t)

1

1− 2−2m
.

Combining everything gives

AdvG0

sEUF−CMA[A] ≤ δ
Q
2 ·

(
2−Ω(d) + 2

qd

sm
+

εSIS(t)

1− 2−2m

)
,

as claimed. Choosing ε ≤ 1/4Q, is sufficient ot make δQ2 constant in the security parameter.

7.4 Standard Model Signatures
The signatures that we have presented in Sections 7.1 and 7.3 are using hash functions which must
be modeled as random oracles for the security proof to go through. Several works have proposed
alternative constructions to remove the need for the random oracle model in the security proof,
but it usually results in less efficient constructions. We can for example cite [Boy10] or [CHKP10]
which proposed lattice-based signatures in the standard model and whose security rely on SIS
using rather elegant and sophisticated arguments. However, they are outside of the scope of this
course, and we leave them to explore in the exercise sessions.

! Go to Contents 97

BIBLIOGRAPHY

] RECAP]

• There exists two main lattice signature design paradigms: Fiat-Shamir with Aborts
(Lyubashevsky), and Hash-and-Sign (GPV).

• Lyubashevsky’s signature scheme is a variant of Schnorr’s signature by adding a
rejection sampling step necessary for security. The keys are pk = (A,AS) and
sk = S ∈ {0,±1}m×k. To sign, we sample y ←↩ DZm,s, compute c = H(pk∥Ay∥M)
and then z = y + Sc. If we reject z with probability P (z), we restart. To verify the
signature, we check that ∥z∥2 ≤ s

√
m and c = H(pk∥Az−Bc∥M).

• Lyubashevsky’s signature is EUF-CMA in the random oracle model under the SIS
assumption.

• A trapdoor function is easy to compute but hard to invert without knowledge of
the trapdoor. In lattice cryptography, a trapdoor is generally a short basis of the
considered lattice. The function x 7→ Ax mod qZ is a trapdoor function, where the
trapdoors are short bases of L⊥q (A) = {x : Ax = 0 mod qZ}. In that case, we can use
the trapdoor to solve SIS, ISIS, sLWE,LWE for the matrix A.

• A trapdoor allows for sampling short preimages with Klein’s algorithm.

• The GPV signature scheme has keys of the form pk = A close to uniform, and sk = BA

a trapdoor on A. To sign, we hash the message M into a syndrome u = H(M), and
then use Klein’s sampler to sample a Gaussian vector x such that Ax = u mod qZ.
To verify the signature, we check that ∥x∥2 ≤ s

√
m and Ax = H(M) mod qZ.

• The GPV signature is EUF-CMA (and even sEUF-CMA) in the random oracle model
under the SIS.

Bibliography
[AP09] J. Alwen and C. Peikert. Generating Shorter Bases for Hard Random Lattices. In

STACS, 2009.

[BDL+11] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed high-
security signatures. In CHES, 2011.

[Boy10] X. Boyen. Lattice Mixing and Vanishing Trapdoors: A Framework for Fully Secure
Short Signatures and More. In PKC, 2010.

[CHKP10] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai Trees, or How to Delegate a
Lattice Basis. In EUROCRYPT, 2010.

[FS86] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In CRYPTO, 1986.

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for Hard Lattices and New
Cryptographic Constructions. In STOC, 2008.

[HS01] J. Hoffstein and J. H. Silverman. Polynomial Rings and Efficient Public Key Authen-
tication II. In Cryptography and Computational Number Theory. 2001.

[JMV01] D. Johnson, A. Menezes, and S. Vanstone. The elliptic curve digital signature algo-
rithm (ECDSA). Certicom, 2001. https://www.cs.miami.edu/home/burt/learning/
Csc609.142/ecdsa-cert.pdf.

[Lyu12] V. Lyubashevsky. Lattice Signatures without Trapdoors. In EUROCRYPT, 2012.

[MM11] D. Micciancio and P. Mol. Pseudorandom Knapsacks and the Sample Complexity of
LWE Search-to-Decision Reductions. In CRYPTO, 2011.

[MP12] D. Micciancio and C. Peikert. Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller.
In EUROCRYPT, 2012.

[PR06] C. Peikert and A. Rosen. Efficient Collision-Resistant Hashing from Worst-Case As-
sumptions on Cyclic Lattices. In TCC, 2006.

98 Go to Contents !

https://www.cs.miami.edu/home/burt/learning/Csc609.142/ecdsa-cert.pdf
https://www.cs.miami.edu/home/burt/learning/Csc609.142/ecdsa-cert.pdf

BIBLIOGRAPHY

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Commun. ACM, 1978.

! Go to Contents 99

Part V

Efficient Constructions and Standards
]

In order to improve the efficiency of cryptographic schemes, many
optimizations were proposed. One of the most fundamental ones is the use of

algebraic integer rings, defining structured variants of the schemes and
underlying assumptions. We then present the newly published post-quantum
cryptography standards based on lattices, namely ML-KEM and ML-DSA,

which are optimized versions of Regev’s encryption scheme and Lyubashevsky’s
signature scheme respectively.

8

Algebraic Lattices and Structured Problems

In this chapter, we present the computational assumptions that underlie the security of most of
the efficient lattice-based constructions today. Although the fundamental problems introduced in
Chapter 5 enable the simple design of encryption and signature schemes, as seen in Chapters 6
and 7, the latter suffer from innefficiencies. The parameters that are needed to provide an accept-
able security level are too large so that the resulting schemes can be used in concrete applications.
A line of work initiated in 2004 aims at improving the efficiency of said schemes by adding an
algebraic structure into the underlying lattices. This was presented in the first part of this module
through ideal lattices. We recall here a few notions on algebraic number theory, before introducing
the structured problems that leads to more efficient designs. These problems underlie the security
of the new post-quantum cryptography standards published by NIST.

Contents
8.1 Algebraic Number Theory . 101

8.1.1 Intuition . 101
8.1.2 How to Choose the Defining Polynomial f? 102
8.1.3 Coefficient Embedding and Multiplication Matrix 102

8.2 Structured Problems . 103
8.2.1 Fundamental Problems over Algebraic Rings 104
8.2.2 Generalization to Modules . 106

8.3 Future Post-Quantum Cryptography Standards from Lattices . . . 108

8.1 Algebraic Number Theory
This section is dedicated to giving the necessary background to define structured lattices and the
computational problems on them. The extensive use of algebraic number theory in lattice-based
cryptography started in 2004 and later formalized by Lyubashevsky, Peikert and Regev [LPR10]
followed by Langlois and Stehlé [LS15]. Here, we only present the necessary concepts for this
chapter. The idea is rather simple and consists in packing integer vectors of Zn into a single
element from a ring R of degree n. Performing ring operations would then translate to the relevant
operations on Zn but could be performed more efficiently.

8.1.1 Intuition
Instead of considering Z, let us take the more general ring of integer polynomials Z[x]. The addition
of polynomials is performed coefficient-wise. However, the multiplication of two polynomials can
result in a polynomial of higher degree. Since the purpose of this structure is to use such polyno-
mials in algorithms, it is necessary to be able to represent them in a computer, which implies that
the degree of said polynomials must be bounded above by some value n. Additionally, Z[x] does
not provide a rich algebraic structure which would thwart the efficiency losses of previous schemes.
We thus consider a slightly different ring where the multiplication is carried so as to always keep a
bounded degree. More precisely we consider the ring R = Z[x]/⟨f⟩ corresponding to the quotient

! Go to Contents 101

8. ALGEBRAIC LATTICES AND STRUCTURED PROBLEMS

ring of Z[x] by the principal ideal ⟨f⟩, where f ∈ Z[x] is monic and irreducible in Q[x]1. Denoting
by n the degree of f , the ring R is in bijection with the set of polynomials of Z[x] of degree less
than n and where the multiplication of two elements is performed as follows.

• Let r =
∑n−1

i=0 rix
i and s =

∑n−1
i=0 six

i be two ring elements with r0, . . . , rn−1, s0, . . . sn−1 in
Z.

• Compute the polynomial product t′ = rs in Z[x], i.e., t′ =
∑n−1

i,j=0 risjx
i+j

• Compute t as the remainder of the euclidean division of t′ by f . The element t defines the
product of r and s in the ring.

The same way we consider integers modulo q, we can reduce all the coefficients modulo q. For
a positive integer q, we thus define Rq = Zq[x]/⟨f⟩ ≡ Z[x]/⟨q, f⟩. This only adds the extra step of
reducing each coefficient modulo q in the multiplication procedure above.

8.1.2 How to Choose the Defining Polynomial f?
The polynomial f has several constraints on it but for any degree n, there are many choices for
a suitable f . The form of f will change the multiplication procedure which can lead to better or
worse efficiency. A bad polynomial f would be one that increases the coefficients of t = rs when
performing the euclidean division. In general, we choose f to be a cyclotomic polynomial as defined
here.

Definition 8.1 (Cyclotomic Polynomial)

Let ℓ be a positive integer. The ℓ-th cyclotomic polynomial Φℓ is defined by

Φℓ =
∏

0≤k<ℓ
k∧ℓ=1

(
x− ei 2kπ

ℓ

)
.

Cyclotomic polynomials have several interesting properties, and are well studied in terms of alge-
braic features as well as geometry. Although it features complex exponentials, we can show that
these polynomials are monic, irreducible in Q[x], and have integer coefficients. The degree of Φℓ

is also given by φ(ℓ) =
∣∣∣Z×ℓ ∣∣∣ where φ is the Euler totient function.

Lemma 8.1 (Cyclotomic Polynomial Properties)

Let ℓ be a positive integer. The ℓ-th cyclotomic polynomial Φℓ is monic, has integer coeffi-
cients, is irreducible in Q[x] and has degree n = φ(ℓ) =

∣∣∣Z×ℓ ∣∣∣.
The most popular choice for ℓ that leads to the most efficient constructions is ℓ = 2k+1 for a
non-negative integer k. In this case, Φℓ = xn + 1 where n = φ(2k+1) = 2k. An advantage of this
polynomial is that the euclidean division does not increase the magnitude of the coefficients, because
in the ring we would have xn = −1 both sides having coefficients of magnitude 1. Throughout the
rest of the chapter, the ring R will be R = Z[x]/⟨xn + 1⟩ for n = 2k unless specified otherwise.
The problems from Section 8.2 can be generalized to other polynomials f and thus other rings R,
but the constructions we will see later use a power-of-two cyclotomic polynomial.

8.1.3 Coefficient Embedding and Multiplication Matrix
The ring R defined as above is isomorphic to Zn because each element of R (resp. Rq = R/qR)
can be represented uniquely by a vector of Zn (resp. Zn

q) corresponding to its vector of coefficients.
This isomorphism is called to coefficient embedding and it is often used implicitly as an alternative
representation of ring elements. In our case, we use τ to denote this isomorphism, and thus for an
element r =

∑
0≤i<n rix

i, τ(r) = [r0| . . . |rn−1]T ∈ Zn. We may also use the notation τi(r) = ri for
each i ∈ {0, . . . , n−1}. By mapping ring elements to the euclidean space, it means we can consider
norms and distance over R. Typically, we can define the usual ℓp-norm over R by∥r∥p :=

∥∥τ(r)∥∥
p
.

1There are actually other requirements, e.g., that the corresponding number field should be monogenic, but it is
outside of the scope of this course.

102 Go to Contents !

8.2. STRUCTURED PROBLEMS

Using this embedding and its inverse, we can also sample discrete Gaussian distribution over R by
first sampling over Zn and mapping it back to R via τ−1.

A natural question however is how to perform the equivalent of ring multiplication directly
in the embedded space? The most common multiplication operation over Rn is the Hadamard
product ⊙ or coefficient-wise product. Unfortunately, in general we have τ(rs) ̸= τ(r) ⊙ τ(s).
To see how to express the coefficient embedding of rs, we need to go back to how multiplication
is defined. Having τ(rs) = τ(r) ⊙ τ(s) would mean that multiplication in the ring essentially
comes down to pairwise multiplication of the coefficients, which is obviously not true. Indeed,
the reduction modulo f(x) scrambles the coefficients in a certain way, but linearly. In particular,
τ(rs) can be expressed as Mτ (r)τ(s), where Mτ (r) ∈ Zn×n only depends on r. Taking the simple
example of f(x) = xn + 1 for n = 2k, it holds that

Mτ (r) =

r0 −rn−1 . . . −r1

r1 r0
. . .

...
...

...
. . . −rn−1

rn−1 rn−2 . . . r0

 .

We can see that the entries of Mτ (r) in this case are only one coefficient multiplied by ±1. This
is not true for all choice of f , but Mτ (r) is always fully determined by r itself and therefore
τ(r). Hence the entire matrix Mτ (r) can be stored by only storing n integers instead of n2. To
summarize, it holds that

∀(r, s) ∈ R2, τ(rs) =Mτ (r)τ(s) =

r0 −rn−1 . . . −r1

r1 r0
. . .

...
...

...
. . . −rn−1

rn−1 rn−2 . . . r0

s0
...
...

sn−1

 .

It is possible to extend the coefficient embedding to vectors of Rd′
by simply concatenating the

coefficient embeddings of each entry. Similarly, one can extend the multiplication matrix map
Mτ to matrices of Rm′×d′

relying on block matrices. We thus have that for all A ∈ Rm′×d′
and

x ∈ Rd′
,

τ(Ax) =

Mτ ([A]1,1) . . . Mτ ([A]1,d′)

...
...

Mτ ([A]m′,1) . . . Mτ ([A]m′,d′)

τ([x]1)

...
τ([x]d′)

 =Mτ (A)τ(x).

Lattice-based cryptography relies heavily on matrices, vectors, and products among those. A
matrix of Zm×d without any specific structure requires the storage of md integers. Here, for
d′ = d/n and m′ = m/n, the matrix Mτ (A) is also in Zm×d. However, since it is composed of
structured blocks, it only requires d′m′ · n integers, that is dm/n. For equivalent dimensions, we
thus gain a factor of n in the storage of matrices. This is extremely interesting for cryptographic
applications to reduce the size of cryptographic keys which are usually matrices.

This ring structure also turns out to be relevant for computational efficiency and computation
speed. At first glance, if multiplying r and s is performed by doing τ−1(Mτ (r)τ(s)), the overall
complexity would be O(n2), which does not provide any improvement. However, the nega-circulant
structure of Mτ (r) already helps to perform the matrix-vector product more efficiently. This
structure is not innocent as it corresponds to the multiplication in R. The latter can actually
be carried out using extremely efficient algorithms such as FFT (Fast Fourier Transform). For
multiplications in Rq = R/qR, we use a variant called NTT (Number Theoretic Transform). These
algorithms compute the product rs with a complexity of O(n log n) instead of O(n2). Hence, the
product Ax can be computed in O(m′d′n log n) = O(md log(n)/n) instead of O(md). We will see
it in TD 7 .

8.2 Structured Problems
Just like we can update our cryptographic toolbox to this new algebraic setting, we also need to
account for the peculiarities we might have introduced as well. In particular, the underlying security
assumptions need to be changed to feature this ring R, thus leading to structured problems. Via
the coefficient embedding and multiplication matrix map, we are essentially able to map it back

! Go to Contents 103

8. ALGEBRAIC LATTICES AND STRUCTURED PROBLEMS

to Z and interpret it as an unstructured problem where we forget the nega-circulant behavior of
Mτ . This simple thought experiment means that for equivalent dimensions and parameters, adding
structure can only decrease the hardness of the problem and in turn the security of cryptographic
primitives. An active area of research is to determine whether this algebraic structure makes
the lattice problems and fundamental problems we introduced significantly easier. We start by
formulating the fundamental problems over rings in Section 8.2.1 before giving their generalizations
to modules2 in Section 8.2.2. Although there are similar results as those from Chapter 5 on the
hardness of these structured problems, this falls outside of the scope of this course.

8.2.1 Fundamental Problems over Algebraic Rings
Ring Short Integer Solution

The ring version of the Short Integer Solution problem was introduced in 2007 [Mic07] to demon-
strate the advantage of what was called quasi-cyclic lattices. They turned to be a specific case of
ideal lattices corresponding to the ring Z[x]/⟨xn − 1⟩ (Careful, here we have xn − 1 with n prime,
which differs from power-of-two cyclotomics). The idea is the same as the standard SIS problem
but by adding structure to the matrix (and thus interpreting it directly in R). More precisely,
consider a vector a ∈ Rm

q for a positive integer m. One can consider the ideal lattice

L⊥q (aT) = {x ∈ Rm : aTx = 0 mod qR},

Applying the coefficient embedding, and defining A =Mτ (a
T) = [Mτ (a1)| . . . |Mτ (am)] ∈ Zn×nm

q ,
the lattice L⊥q (aT) is isomorpic to

L⊥q (A) = {x ∈ Znm : Ax = 0 mod qZ}.

We now give the formal definition which is very similar to Definition 5.1.

Definition 8.2 (Ring Short Integer Solution)

Let n be a power-of-two and R = Z[x]/⟨xn + 1⟩. Let m, q be two positive integers, and β
a positive real. The Ring Short Integer Solution problem R-SISn,m,q,β asks to find a vector
x ∈ Rm such that aTx = 0 mod qR and 0 < ∥x∥2 ≤ β, given a uniformly random vector a
in Rm

q .

n

n

m blocs

· · ·Mτ (a1) Mτ (am)

x

= 0 mod qZ

Figure 8.1: Ring Short Integer Solution problem embedded into the integers via τ and Mτ .

Ring Learning With Errors

Similarly, we can define a ring version of the Learning With Errors problem. It was first introduced
in 2009 and 2010 by Lyubashevsky, Peikert and Regev [LPR10]. We can once again consider a

2A module over a ring R is the equivalent of a vector space over a field K. It is an algebraic structure consider
addition of module elements, as well as scalar multiplication by ring elements. We note that most of the results
commonly known in linear algebra over vector spaces do not carry straightforwardly to modules.

104 Go to Contents !

8.2. STRUCTURED PROBLEMS

vector a ∈ Rm
q and the lattice

Lq(a) = {y ∈ Rm : ∃s ∈ Rq,as = y mod qR}.

The CVPγ problem then defines the ring version of LWE: given a and as+e, find s. The coefficient
embedding links it to the integers as follows. Given A = Mτ (a) and b = Mτ (a)τ(s) + τ(e), find
τ(s). Here are the formal definitions.

Definition 8.3 (Ring Learning With Errors Distribution)

Let n be a power-of-two and R = Z[x]/⟨xn + 1⟩. Let q be a positive integer. Let s be in Rq,
and De be a distribution over R. The R-LWE distribution denoted by AR

s,De
is defined by the

following random process: sample a←↩ U(Rq), and e←↩ De, and output (a, as+ e mod qR).

Definition 8.4 ((Search) Ring Learning With Errors)

Let n be a power-of-two and R = Z[x]/⟨xn+1⟩. Let q be a positive integer. Let Ds be a secret
distribution over Rq, and De be an error distribution over R. The search Ring Learning With
Errors problem sR-LWEn,q,Ds,De

is as follows. Let s be drawn from Ds. Given arbitrarily
many samples (ai, ais+ ei mod qR) drawn from AR

s,De
, find s.

When the number of available samples is limited to m, we write the problem as
sLWEn,q,m,Ds,De , and we present it in vector form as follows. Given a ←↩ U(Rm

q) and
t = as+ e mod qR for some s←↩ Ds and e←↩ Dm

e , find s.

Definition 8.5 ((Decision) Ring Learning With Errors)

Let n be a power-of-two and R = Z[x]/⟨xn + 1⟩. Let q be a positive integer. Let Ds be
a secret distribution over Rq, and De be an error distribution over R. The decision Ring
Learning With Errors problem R-LWEn,q,Ds,De

is as follows. Let s be drawn from Ds, and
let D ∈ {AR

s,De
, U(Rq × Rq)}. Given arbitrarily many samples from D , decide whether

D = AR
s,De

or if D = U(Rq ×Rq).
When the number of available samples is limited to m, we write the problem as
R-LWEn,q,m,Ds,De

, and we present it in vector form as follows. Given a ←↩ U(Rm
q) and

t ∈ Rm
q , decide whether t = as+e mod qR for some s←↩ Ds and e←↩ Dm

e , or if t←↩ U(Rm
q).

Another Fundamental Problem: NTRU

This algebraic structure allows one to define other algorithmic problems such as the NTRU prob-
lem [HPS98]. NTRU was proposed by Hoffstein, Pipher and Silverman in 1998 with the goal of
the designing an algebraic encryption scheme. This scheme is part of lattice-based cryptography
and is therefore one of the first encryption scheme over lattices. Underlying the security of this
primitive is another computational assumption, just like SIS or LWE, which is formulated over
R = Z[x]/⟨f⟩. As opposed to SIS and LWE, NTRU does not have an unstructured variant, and
did not benefit from worst-case to average-case reductions from variants of SVP. This last aspect
has been the subject of recent research by Pellet–Mary and Stehlé [PS21] giving the first reductions
for NTRU.

Definition 8.6 ((Search) NTRU)

Let n be a power-of-two and R = Z[x]/⟨xn + 1⟩. Let q be a positive integer. Let Df and Dg

be two distributions on R×q and Rq respectively, where R×q is the group of invertible elements
of Rq. The search NTRU problem sNTRUn,q,Df ,Dg is as follows. Let f be drawn from Df ,
and g from Dg. Given h = gf−1 mod qR, find f and g.

Definition 8.7 ((Decision) NTRU)

Let n be a power-of-two and R = Z[x]/⟨xn + 1⟩. Let q be a positive integer. Let Df and Dg

be two distributions on R×q and Rq respectively, where R×q is the group of invertible elements

! Go to Contents 105

8. ALGEBRAIC LATTICES AND STRUCTURED PROBLEMS

n

n

...

Mτ (a1)

Mτ (am)

, t = ...

Mτ (a1)

Mτ (am)

s

+ e mod qZ s
Search
Version

...

Mτ (a1)

Mτ (am)

, t = ...

Mτ (a1)

Mτ (am)

s

+ e mod qZ ...

Mτ (a1)

Mτ (am)

, t

û

Decisional
Version

Figure 8.2: Ring Learning With Errors problem embedded into the integers via τ and Mτ .

of Rq. The decision NTRU problem NTRUn,q,Df ,Dg is as follows. Given h ∈ Rq, decide
whether h = gf−1 mod qR for f drawn from Df and g from Dg, or h←↩ U(Rq).

The distributions Df and Dg are chosen so that f and g are short elements, that is
∥∥τ(f)∥∥

2
and∥∥τ(g)∥∥

2
are small. The problem thus comes down to finding the numerator and denominator of a

quotient of short polynomials, or to distinguish such a quotient from a uniformly random element.
We can see this problem once again as a variant of SVP over a specific lattice. By rewriting the
equation h = gf−1 mod qR as g + h(−f) = 0 mod qR, it holds that the vector [g| − f]T is a short
vector of the lattice

L⊥q ([1|h]) = {x ∈ R2 : [1|h]x = 0 mod qR}.

8.2.2 Generalization to Modules

In the problems we presented in Chapter 5, the dimension of the problem d,m, namely that of
the matrix A involved, were set somewhat independently. Here, when embedding the problem
into the integers, one dimension is n while the other is nm. In particular, the dimension driving
the security is n. As a result, increasing the hardness of the problem requires to increase n, but
it in turn drastically increases the second dimension which may be undesirable. Langlois and
Stehlé [LS15] thus formalized a generalization of the ring problems, and proved their hardness as
well, to allow for an improved flexibility in the parameter choices. These generalizations are called
Module Short Integer Solution and Module Learning With Errors and encompass both SIS,LWE
and R-SIS,R-LWE. The idea is to start from the original problems SIS and LWE and simply
replace the ring of integers Z by the new algebraic ring R. We thus end up with matrices over
R of dimensions m and d, i.e., dimensions nm and nd when embedded into Z. Thence, one can
tweak m and d to change the security of the scheme without having to change the underlying ring
R (and its degree n). We give the formal definitions only.

106 Go to Contents !

8.2. STRUCTURED PROBLEMS

Definition 8.8 (Module Short Integer Solution)

Let n be a power-of-two and R = Z[x]/⟨xn + 1⟩. Let d,m, q be three positive integers, and
β a positive real. The Module Short Integer Solution problem M-SISpn,d,m,q,β asks to find
a vector x ∈ Rm such that Ax = 0 mod qR and 0 < ∥x∥2 ≤ β, given a uniformly random
matrix A in Rd×m

q .

· · ·

· · ·

... ...

Mτ (a1,1) Mτ (a1,m)

Mτ (ad,1) Mτ (ad,m)

x

= 0 mod qZ

Figure 8.3: Module Short Integer Solution problem embedded into the integers via τ and Mτ .

Definition 8.9 (Module Learning With Errors Distribution)

Let n be a power-of-two and R = Z[x]/⟨xn+1⟩. Let d, q be positive integers. Let s be in Rd
q ,

and De be a distribution over R. The R-LWE distribution denoted by AM
s,De

is defined by the
following random process: sample a←↩ U(Rd

q), and e←↩ De, and output (a,aT s+e mod qR).

Definition 8.10 ((Search) Module Learning With Errors)

Let n be a power-of-two and R = Z[x]/⟨xn + 1⟩. Let d, q be a positive integer. Let Ds be
a secret distribution over Rd

q , and De be an error distribution over R. The search Module
Learning With Errors problem sM-LWEn,d,q,Ds,De

is as follows. Let s be drawn from Ds.
Given arbitrarily many samples (ai,a

T
i s+ ei mod qR) drawn from AM

s,De
, find s.

When the number of available samples is limited to m, we write the problem as
sM-LWEn,d,q,m,Ds,De

, and we present it in matrix form as follows. Given A ←↩ U(Rm×d
q)

and t = As+ e mod qR for some s←↩ Ds and e←↩ Dm
e , find s.

Definition 8.11 ((Decision) Module Learning With Errors)

Let n be a power-of-two and R = Z[x]/⟨xn + 1⟩. Let d, q be positive integers. Let Ds be a
secret distribution over Rd

q , and De be an error distribution over R. The decision Module
Learning With Errors problem M-LWEn,d,q,Ds,De

is as follows. Let s be drawn from Ds,
and let D ∈ {AM

s,De
, U(Rd

q × Rq)}. Given arbitrarily many samples from D , decide whether
D = AM

s,De
or if D = U(Rd

q ×Rq).
When the number of available samples is limited to m, we write the problem as
M-LWEn,d,q,m,Ds,De , and we present it in matrix form as follows. Given A ←↩ U(Rm×d

q)
and t ∈ Rm

q , decide whether t = As + e mod qR for some s ←↩ Ds and e ←↩ Dm
e , or if

t←↩ U(Rm
q).

! Go to Contents 107

8. ALGEBRAIC LATTICES AND STRUCTURED PROBLEMS

· · ·

· · ·

... ...

Mτ (a1,1) Mτ (a1,d)

Mτ (am,1) Mτ (am,d)

, t =

· · ·

· · ·

... ...

Mτ (a1,1) Mτ (a1,d)

Mτ (am,1) Mτ (am,d)

s

+ e mod qZ s
Search
Version

· · ·

· · ·

... ...

Mτ (a1,1) Mτ (a1,d)

Mτ (am,1) Mτ (am,d)

, t =

· · ·

· · ·

... ...

Mτ (a1,1) Mτ (a1,d)

Mτ (am,1) Mτ (am,d)

s

+ e mod qZ t

û

Decisional
Version

Figure 8.4: Module Learning With Errors problem embedded into the integers via τ and Mτ .

8.3 Future Post-Quantum Cryptography Standards from Lat-
tices

The anticipate the threat of quantum computing and deploy quantum-resistant cryptographic al-
gorithms and protocols, the US National Institute of Standards and Technology (NIST) launched
a post-quantum standardization effort in 2016 [NIS]. The goal was to motivate the cryptologic
research community to come up with public-key encryption schemes (or key encapsulation mech-
anisms) as well as digital signatures that would withstand quantum attacks. The proposals were
open for scrutiny and the community was encouraged to assess their efficiency but mostly their
security by either providing security reductions to hard problems, or provide attacks to break or
decrease certain security claims. A total of 82 submissions were featured in the first round from
different families of assumptions such as lattices, codes, isogenies, multivariate, or even symmet-
ric ones. Among them, 4 lattice-based signatures and 24 lattice-based KEM (Key Encapsulation
Mechanism) were proposed, many of which made it to the second and third rounds. In July 2020,
the third round started with four finalists for encryption and three finalists for signatures which
are mentioned in Table 8.1.

108 Go to Contents !

8.3. FUTURE POST-QUANTUM CRYPTOGRAPHY STANDARDS FROM LATTICES

Table 8.1 (Third round finalists of the NIST competition)

Lattices

Codes Multivariate (broken)

KEM Signature
Crystals-Kyber Crystals-Dilithium
Saber
NTRU Falcon
Classic McEliece Rainbow .

Then, in July 2022, four algorithms were selected as the first post-quantum cryptography stan-
dards. Three of them are lattice-based: Crystals-Kyber (KEM), Crystals-Dilithium (Signature)
and Falcon (Signature). The fourth (SPHINCS+) is a hash-based signature which was selected
among the alternate finalists of the third round in order to have a variety of assumptions among
the standards. Hash-based signatures are very robust, but suffer from large signature sizes. The
standards FIPS 203 (ML-KEM for Crystals-Kyber), FIPS 204 (ML-DSA for Crystals-Dilithium)
and FIPS 205 (SLH-DSA for SPHINCS+) are recently been officially published by NIST on Au-
gust 13th 2024. The standard FIPS 206 (FN-DSA for Falcon) is still pending and expect within
2025. Although the first standards are now published, the optimizations of these algorithms or the
proposal of new ones is still an active research area. Optimizations have been proposed during and
after the competition, some of which led to other algorithms which fed into other standardization
efforts (ISO, KPQC, etc.). In the next chapters, we present only ML-KEM (Kyber) and ML-DSA
(Dilithium).

! Go to Contents 109

BIBLIOGRAPHY

] RECAP]

• For improved efficiency, we consider an algebraic setting by replacing Z with a ring
R = Z[x]/⟨xn+1⟩ where n is a power of 2. This structure allows for faster computations
using the FFT (or NTT for multiplications in Rq = R/qR), and allows for a better
storage of matrices. The norme of elements in R is defined by the norm of their
coefficient vector when seen as polynomials.

• The SIS, ISIS,LWE problems underlying the security of the constructions must be
adapted to this new algebraic setting. We talk about module variants.

• The M-SISn,d,m,q,β problem asks to find x ∈ Rm such that Ax = 0 mod qR and
0 <∥x∥2 ≤ β given A ∈ Rd×m

q uniform.

• The sM-LWEn,d,q,m,Ds,De
problem asks to find the secret s, sampled from Ds, given

A ∈ Rm×d
q uniform, and t = As+ e mod qR where e ←↩ Dm

e . The decisional version
M-LWEn,d,q,m,Ds,De

asks to distinguish such a t from a perfectly uniform vector over
Rm

q .

• The ring variants R-SIS, sR-LWE,R-LWE correspond to the module problems in the
specific case of d = 1. The unstructured problems SIS, sLWE,LWE correspond to the
specific case of n = 1.

• The hardness of this problems is proven under variants of SVP restricted to structured
lattices (ideals or modules).

Bibliography
[HPS98] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A Ring-Based Public Key Cryp-

tosystem. In ANTS, 1998.

[LPR10] V. Lyubashevsky, C. Peikert, and O. Regev. On Ideal Lattices and Learning with Errors
over Rings. In EUROCRYPT, 2010.

[LS15] A. Langlois and D. Stehlé. Worst-case to Average-case Reductions for Module Lattices.
DCC, 2015.

[Mic07] D. Micciancio. Generalized Compact Knapsacks, Cyclic Lattices, and Efficient One-Way
Functions. Comput. Complex., 2007.

[NIS] NIST. Post-Quantum Cryptography Standardization. https:
//csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Post-Quantum-Cryptography-Standardization.

[PS21] A. Pellet-Mary and D. Stehlé. On the Hardness of the NTRU Problem. In ASIACRYPT,
2021.

110 Go to Contents !

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization

9

ML-KEM : Crystals-Kyber

In this chapter, we present in detail the algorithm Crystals-Kyber [BDK+18] which is now the new
key encapsulation mechanism standard (ML-KEM) published by NIST in the FIPS 203 document
(FIPS means Federal Information Processing Standard). We present this algorithm step by step.
First of all, we start from a variant of Regev’s encryption scheme which we optimize to obtain a
public key encryption secure in the IND-CPA model. The parameters of this scheme are however
chosen to only encrypt elements of at most 256 bits, which corresponds to the size of a symmetric
key. Then, we briefly present the transformation from an IND-CPA-secure public key encryption
to an IND-CCA-secure KEM. The transformation used in the case of Kyber is a variant of the
generic transform due to Fujisaki and Okamoto [FO99]. This chapter is heavily inspired by the
Kyber specification and the tutorial of Lyubashevsky [Lyu24].

Contents
9.1 Crystals-Kyber: IND-CPA Public Key Encryption 111

9.1.1 Algebraic Structure . 112
9.1.2 Error Distributions . 112
9.1.3 Compression . 113
9.1.4 Description de Kyber . 115

9.2 ML-KEM: IND-CCA Key Encapsulation Mechanism 116
9.3 Comparison with Elliptic Curve Diffie-Hellman 117

9.1 Crystals-Kyber: IND-CPA Public Key Encryption
We start the description of Kyber by our starting point in terms of lattice-based encryption,
Regev’s encryption scheme. As we have seen in TD 2 , the IND-CPA security requires two
elements: simulating the public key under the LWE assumption, and simulating the ciphertexts
with the leftover hash lemma. The latter is however very constraining on the parameters as it
requires m ≥ (d + 1) log2 q + 2λ. This drastically deteriorates the performance of the scheme.
Fortunately, in TD 3 , we have seen how to bypass the lefotver hash lemma by using a second
LWE assumption in the simulation of ciphertexts. Typically, this allows for choosing m = d,
leading to much more compact parameters. To be coherent with the notations in the ML-KEM
standard, we use k instead of m = d. At a high level, the algorithm is described as follows.

KeyGen: Sample s ←↩ DZk,αq and e ←↩ DZk,αq. Sample A ←↩ U(Zk×k
q), and compute t =

As+ e mod qZ. Output pk = (A, t) and sk = s.

Enc: Given a message M ∈ {0, 1}, sample r ←↩ U({0, 1}k) and e1 ←↩ DZk,γq, e2 ←↩ DZ,γq and
output c = [cT1 |c2]T where

c1 = AT r+ e1 mod qZ, and c2 = tT r+ e2 + ⌊q/2⌉M mod qZ,

Dec: Given a ciphertext [cT1 |c2]T ∈ Zk+1
q , we compute u = c2 − cT1 s mod qZ. Output 0 if u is

closer to 0 than ±⌊q/2⌉, and 1 otherwise.

We now start from this algorithm and add several optimizations to end up with the Kyber encryp-
tion scheme.

! Go to Contents 111

9. ML-KEM : CRYSTALS-KYBER

9.1.1 Algebraic Structure

We observe that, as in Regev’s encryption, this variant only allows for encrypting one bit at a time
which is far from optimal. Also, as explained in Chapter 8, the schemes based on integers and
modular integers can be made more efficient by considering a richer algebraic structure. This is the
case for Kyber which works over a power-of-two cyclotomic ring R = Z[x]/⟨xn+1⟩ with n a power
of two 2. Just like we have seen in the previous chapter, it is possible to modify the underlying
assumptions and consider M-LWE instead of LWE. The key then becomes t = As + e mod qR,
where the entries of each matrix and vectors are now in R. For the ciphertext, we can proceed in
a similar way and compute c1 = AT r+ e1 mod qR, and c2 = tT r+ ⌊q/2⌉M mod qR.

Here, the element M corresponding to the message must be an element of R. Because 0 and 1
are indeed elements of R (seen as constant polynomials), we could keep {0, 1} as the message space.
However, this would ignore all the higher degree monomials we have at our disposal. Instead, we
consider messages as polynomials for which all the coefficients are binary in {0, 1}. The message
space becomes

M = τ−1({0, 1}n).

In particular, we can encode one message bit in each of the coefficients, and thus n bits in a single
element of R. Our goal being to encrypt a symmetric key of at most 256 bits, it is then sufficient
to choose n ≥ 256. During decryption, we decode each coefficient individually. We obtain a new
version of our scheme as follows. Note that the effective lattice dimension (after embedding with
τ and Mτ) is nk. To preserve the same dimension as the unstructured version, we can reduce the
value of k by a factor of n. For n = 256, k will essentially be a small constant between 2 and 4
depending on the targeted security level.

KeyGen: Sample s ←↩ DRk,αq and e ←↩ DRk,αq. Sample A ←↩ U(Rk×k
q), and compute t =

As+ e mod qR. Output pk = (A, t) and sk = s.

Enc: Given a message M ∈ M, sample r ←↩ U(Mk) and e1 ←↩ DRk,γq, e2 ←↩ DR,γq and output
c = [cT1 |c2]T where

c1 = AT r+ e1 mod qR, and c2 = tT r+ e2 + ⌊q/2⌉M mod qR,

Dec: Given a ciphertext [cT1 |c2]T ∈ Rk+1
q , we compute u = c2 − cT1 s mod qR. We define the

decrypted message M ∈M as follows. For i from 0 to n− 1, we define τi(M) = 0 if τi(u) is
closer to 0 than ±⌊q/2⌉, and τi(M) = 1 otherwise.

9.1.2 Error Distributions

The scheme we presented uses discrete Gaussian distributions over R. In most case, discrete
Gaussians are to be avoided from an implementation perspective because they can be fairly complex
to sample from securely. Even in the simple case where sampling over R comes down to sampling
over the trivial lattice Zn, the procedure requires either the use of precomputed tables, floating-
point arithmetic, etc. Also, the encryption procedure should use the smallest possible errors to
avoid decryption failure (although not too small to preserve security).

In the Kyber encryption scheme, the authors chose to use centered binomial distributions which
we present here. The advantage is that these distributions are very easy to sample from, do not
require a lot of randomness (for small binomial parameters), and generally give smaller elements.
This thus improves the computational efficiency, while choosing smaller parameters (modulus q)
due to a smaller decryption error.

Centered Binomial Distribution

Binomial distributions frequently arise in probability theory through the repetition of Bernoulli
trials. In particular, if x1, . . . , xN are independent random variables taking the value 1 with
probability p and 0 otherwise, the distribution of X =

∑N
i=1 xi is called the binomial distribution

of parameters (N, p). This distribution has a mean of Np and is therefore not centered. We can
define the corresponding centered distribution by that of X −Np. This gives rise to the centered
binomial distribution of parameters (N, p). In this course, we only consider the case of p = 1/2.

112 Go to Contents !

9.1. CRYSTALS-KYBER: IND-CPA PUBLIC KEY ENCRYPTION

Definition 9.1 (Centered Binomial Distribution)

Let η be a positive integer. We define the centered binomial distribution of parameter η,
denoted ψη, as the distribution of (

∑2η
i=1 xi)− η, where x1, . . . , x2η are independent random

variables following U({0, 1}).
The distribution ψη can also be defined by the distribution of

∑η
i=1(xi − x′i) where

x1, x
′
1, . . . , xη, x

′
η are independent random variables following U({0, 1}).

Sampling from this distribution thus comes down to summing 2η random bits (for example gen-
erated by a cryptographic hash function or a PRF (pseudrandom function)) and then substracting
η, which is very easy to do. This distribution ψη produces elements of J−η, ηK following a binomial
distribution. In our case, we must produce elements of R and we thus define the distribution
Bη = τ−1(ψn

η). This means each coefficient of the ring element is sampled from ψη independently
of the others. The outputted elements are then in τ−1(J−η, ηKn), set that we usually denote by
Sη.

Different Parameters for a Finer Security

In the previous scheme, we use different error distributions DRk,αq, U(Mk),DRk,γq, etc. The use
of different parameters for each distribution allows for a finer security. For example, the simulation
of the public key relies on M-LWEn,k,k,q,D

Rk,αq
,D

Rk,αq
, while the ciphertext simulation relies on

M-LWEn,k,k+1,q,U(Mk),D
Rk+1,γq

. We see that one of the dimensions goes from k to k + 1 which
legitimates the change from α to γ.

Kyber’s encryption also uses a similar granularity to obtain a finer security estimation, and
thus choose the most optimal parameters so as not to overshoot the security target. In their case,
they use centered binomial distributions with two different parameters η1 and η2. The parameter
η1 is used in the public key (s and e) as well as the randomness r. The parameter η2 is used only
to fix the ciphertext errors (e1, e2). We then get the following version of our ongoing construction
of Kyber.

KeyGen: Sample s ←↩ Bkη1
and e ←↩ Bkη1

. Sample A ←↩ U(Rk×k
q), and compute t = As +

e mod qR. Output pk = (A, t) and sk = s.

Enc: Given a message M ∈M, sample r←↩ Bkη1
and e1 ←↩ Bkη2

, e2 ←↩ Bη2
and output c = [cT1 |c2]T

where
c1 = AT r+ e1 mod qR, and c2 = tT r+ e2 + ⌊q/2⌉M mod qR,

Dec: Given a ciphertext [cT1 |c2]T ∈ Rk+1
q , we compute u = c2 − cT1 s mod qR. We define the

decrypted message M ∈M as follows. For i from 0 to n− 1, we define τi(M) = 0 if τi(u) is
closer to 0 than ±⌊q/2⌉, and τi(M) = 1 otherwise.

9.1.3 Compression
The optimizations we introduce before getting to the Kyber encryption are about compression. To
understand the motivations behind that, let us estimate the size of the keys and ciphertexts. The
public key pk contains A and t which are uniform over Rq (recall t is uniform under M-LWE).
Each coefficient of a polynomial of Rq is then an element of Zq which must then be stored with
⌈log2 q⌉ bits. The total storage of pk then requires k2n⌈log2 q⌉ + kn⌈log2 q⌉ = k(k + 1)n⌈log2 q⌉
bits. Similarly, each ciphertext c is a vector uniform in Rk+1

q which requires (k + 1)n⌈log2 q⌉ bits
of storage. For parameters giving the smallest acceptable security level, this corresponds to 2300
bytes for the public key and 1150 bytes for the ciphertext. As a comparison, classical key exchange
mechanisms like Diffie-Hellman only require sending 64 bytes in total. It would thus be preferable
to reduce the sizes as much as possible, albeit without significiantly hindering security. For that,
it is possible to use compression methods.

Public Key Compression

Let us first look at the public key. We can see that the matrix A is perfectly uniform, which
means no secret information is hidden inside it. We can therefore sample it pseudo-randomly from
a seed ρ of 256 bits. Hence, the storage of the matrix A would be reduced to storing ρ. The only
drawback is that we will need to expand the seed ρ to recover A at each encryption procedure.
This is nonetheless perfectly acceptable because it allows one to reduce the public key size to

! Go to Contents 113

9. ML-KEM : CRYSTALS-KYBER

256+ kn⌈log2 q⌉ bits (so 800 bytes for the same estimations as before). More precisely, the matrix
A is computed from ρ using an extendable output function (XOF) such as SHAKE (based on the
SHA-3)

For the second part of pk, the vector t depends on secret information and thus cannot be
recomputed from public information. It must then be included in the public key. Overall, the
public key is now (ρ, t) which is represented by 256 + kn⌈log2 q⌉ bits.

Ciphertext Compression and Rounding Errors

Let us now spend some time on the ciphertext compression. For that, we look at the coefficients
individually. Each element of Zq requires ⌈log2 q⌉ bits. Reducing this size to say d bits implies
compressing the set Zq to a set S of size 2d. However, this compression is irreversible and induces
a loss of information on the initial ciphertext. It means the compression introduces an error
which affects the decryption as we no longer have access to the full ciphertext. Because of the
decryption, we must be careful as to how we choose this set S. In particular, we want to define
S ⊂ Zq so that the maximal distance between two points of S (measured by the number of elements
of Zq in between those points) is the smallest possible. With this constraint, we know that the
aforementioned distance is at least q/2d. In the case of Kyber, we choose

S = {⌊i · q/2d⌉; 0 ≤ i < 2d}

Now that we have the intuition for it, let us formally define the compression and decompression
functions used in Kyber.

Definition 9.2 (Compression and Decompression Functions)

Let q be a positive integer. For all d < ⌈log2 q⌉, we define the functions Compressd : Zq → Z2d

and Decompressd : Z2d → Zq as follows (q is implicit in the notation).

Compressd : Zq → Z2d

x 7→ ⌊x · 2d/q⌉ mod+ 2d

Decompressd : Z2d → Zq

x 7→ ⌊x · q/2d⌉

where r mod+ 2d is the unique representative of r ∈ Z2d in {0, . . . , 2d − 1}.

The end of the encryption procedure would then perform a compression of c1 and c2, while the
decryption procedure would start by decompressing these elements. As mentioned above, the com-
pression induces an information loss in general, which means that Decompressd(Compressd(x)) ̸= x
in the general case. It turns out that we keep the equality if x ∈ Z2d . In other cases, the com-
pression error can be bounded, which is crucial in the security evaluation of Kyber as well as the
estimation of the decryption failure probability. We indeed have the following lemma.

Lemma 9.1 (Erreur de Compression)

Let q, d be positive integers such that 2d < q. Then for all x in Zq, we have

Decompressd
(
Compressd(x)

)
= x+ e′ ∈ Zq

for some e′ ∈ Z such that
∣∣e′∣∣ ≤ q/2d+1 + 1/2.

This error e′ introduced by the compression must then be taken into account in the decryption.
In particular, because the decryption procedure multiplies c1 with s, the compression error of c1
will be multiplied by s as well. It is therefore this term that will impact the decryption failure
probability the most. The compression will then need to be smaller for c1 than for c2. Hence, c1
and c2 having very distinct roles, we use two different compression parameters du and dv. Moreover,
to avoid any confusion, we note u, v the uncompressed versions of c1, c2 (those in Rq), and keep
the notations c1, c2 for the compressed versions (thos in R2du and R2dv).

114 Go to Contents !

9.1. CRYSTALS-KYBER: IND-CPA PUBLIC KEY ENCRYPTION

Increased Security with Compression

Additionally, we remark that the error stemming from the compression adds to the binomial errors
of the M-LWE problem. As it increases the error, it seems like the compression improves the
security of the system. It is indeed the case, but we can no longer rely solely on M-LWE for that.
The compression error depends, in a deterministic way, on the value to be compressed. Yet, this
value to be compressed is the M-LWE instance. Hence, the compression error depends on the
M-LWE instance and we cannot argue indistinguishability from uniform directly. In practice, this
corresponds to a new assumption which is somewhat hybrid between M-LWE and Module Learning
With Rounding M-LWR.

The M-LWR problem can be seen as a variant of M-LWE where we add a deterministic rounding
error instead of a random one. Concretely, the goal would be to recover s given Decompressd

(
Compressd(As mod qR)

)
.

This problem, at least in its unstructured version LWR, benefits from reductions from LWE in spe-
cific situations. In most concrete applications, its hardness is less studied than LWE or M-LWE.
Nevertheless, here we have, as mentioned above, a hybrid version between M-LWE and M-LWR. In-
deed, the (decompressed) ciphertexts are of the form Decompressd

(
Compressd(As+ e mod qR)

)
=

As + e + e′ mod qR. The combination of these two assumptions seems to reinforce the heuristic
security of the system. We will not go further into the details of the security evaluation.

Message Encoding

The encryption algorithm requires encoding each coefficient of the message with respect to q so
that the messages 0 and 1 are sufficiently distant to allow for correct decryption. This is why
we multiply the message by ⌊q/2⌉. This also requires the decoding of u during decryption, which
corresponds to 0 when it is closer to 0 than ⌊q/2⌉ and 1 otherwise. Thanks to the compression and
decompression functions we just introduced, we can rewrite this two steps in a simpler way. In
particular, when M has binary coefficients, we indeed have ⌊q/2⌉M = Decompress1(M) where the
decompression parameter is d = 1. On the other end, the decoding step at the end of the decryption
can be rewritten with Compress1 as well. Indeed, for all x in Zq, Compress1(x) is exactly 0 if x is
closer to 0 than ⌊q/2⌉ and 1 otherwise.

9.1.4 Description de Kyber
We can finally describe the three algorithms KeyGen, Enc and Dec defining the Kyber public key
encryption scheme in Algorithms 9.1, 9.2, and 9.3.

Algorithm 9.1: KeyGen (Kyber)
Input: Ring R of degree n, integers k, q, η1.

1. ρ←↩ U({0, 1}256)
2. A← XOF (ρ) ▷ A ∈ Rk×k

q

3. s←↩ Bkη1

4. e←↩ Bkη1

5. t← As+ e mod qR

Output: pk = (ρ, t), sk = s

Algorithm 9.2: Enc (Kyber)
Input: Public parameters, public key pk = (ρ, t) ∈ {0, 1}256 ×Rk

q , message M ∈M.

1. A← XOF (ρ)
2. r←↩ Bkη1

3. e1 ←↩ Bkη2

4. e2 ←↩ Bη2

5. u← AT r+ e1 mod qR
6. v ← tT r+ e2 + Decompress1(M) mod qR

Output: (c1, c2) = (Compressdu
(u),Compressdv

(v))

Algorithm 9.3: Dec (Kyber)
Input: Public parameters, secret key sk = s ∈ Rk

q , ciphertext (c1, c2) ∈ Rk
2du ×R2dv .

! Go to Contents 115

9. ML-KEM : CRYSTALS-KYBER

1. u← Decompressdu
(c1)

2. v ← Decompressdv
(c2)

3. u← v − sTu mod qR
4. M ← Compress1(u)

Output: M ∈M

Pseudo-randomization of the Encryption

As we will see when presenting the KEM, it is necessary to make the binomial sampling pseudo-
random. It means that sampling is performed from a seed so that the same seed gives out the
same samples. This is for example what is done for the matrix A where we sample it from the
seed ρ. Concretely, the KeyGen algorithm takes as input a random 256-bit string d. We start
by computing 512 pseudorandom bits which we segment into two 256-bit blocks. This is done
by (ρ, σ) = SHA3− 512(d∥k) (where k is the dimension of the matrix). The string ρ is used to
expand A as above, and the string σ is used to sample the binomial elements s and e. Concretely,
a polynomial p is sampled according to Bη with the function SamplePolyCBDη(σ, ctr) where ctr is a
counter which increments after each sampled polynomial. In the end, it means that give the same
random string d, we will generate the same key pair.

For the encryption, we generate a pseudorandom bit-string r for the binomial errors involved in
the encryption, from the public key and the message itself. In other words, for the same message,
and the same public key, the randomness will be the same hence giving the same ciphertext. This
seems to contradict the classical IND-CPA security. However, for KEMs, the encrypted message is
randomly chosen as it corresponds (or allows for deducing) the exhanged symmetric key. Making
the encryption deterministic for a given message is then not a problem and is actually essential for
the Fujisaki-Okamoto transform to obtain a KEM that is IND-CCA2-secure.

Parameters

Table 9.1 reports the three parameter sets called Kyber512, Kyber768 and Kyber1024. They
correspond to different security levels, where the higher ones are more encline to be used in highly
sensitive applications. We also give in Table 9.2 the sizes of the keys and ciphertexts for each
security level.

Table 9.1 (Kyber Parameters)

n k q η1 η2 du dv δ

Kyber512 256 2 3329 3 2 10 4 2−139

Kyber768 256 3 3329 2 2 10 4 2−164

Kyber1024 256 4 3329 2 2 11 5 2−174

The parameter δ is the decryption failure probability.

Table 9.2 (Key and Ciphertext Sizes)

|pk| (B) |sk| (B) |c| (B)

Kyber512 800 1632 768

Kyber768 1184 2400 1088

Kyber1024 1568 3168 1568

9.2 ML-KEM: IND-CCA Key Encapsulation Mechanism
A Key Encapsulation Mechanism (KEM) is essentially the equivalent of a public key encryption
scheme allowing for exchanging random fixed-size messages such as symmetric keys. In 1999,
Fujisaki and Okamoto [FO99] proposed a generic transformation turning an IND-CPA public key
encryption into an IND-CCA KEM, thus resisting to attacks of an adversary having access to a
decryption oracle. In the context of KEMs, we talk about encapsulation Encaps and decpasulation

116 Go to Contents !

9.3. COMPARISON WITH ELLIPTIC CURVE DIFFIE-HELLMAN

Decaps instead of encryption and decryption. Without entering the details, the idea of the Fujisaki-
Okamoto transform is essentially to render the decapsulation oracle useless so that it returns
something only when the adversary already knows the message. Hence, the adversary cannot send
malformed ciphertexts for which it does not know the underlying message. For that, we ensure the
randomness r used in the encryption algorithm depends on the encrypted message. More precisely,
we generate a random message M (a 256-bit string), and generate (K, r) = H′(M∥H(pk)). The
exchanged symmetric key corresponds to K (256 bits) and the bitstring r (256 bits) is used to
sample the errors r, e1, e2 in the encryption algorithm. The decapsulation can then decrypt and
re-encrypt to ensure the two ciphertexts are identical. If not, the ciphertext was malformed. In
that case, instead of sending an abort symbol ⊥, we return a random value K (this method is
called implicit rejection). Otherwise, the decrypted message is the correct one and the recipient
can recompute the key K with (K, r) = H′(M∥H(pk)).

The details of this transform go beyond the scope of this course so we only present the algorithms
of ML-KEM.

Algorithm 9.4: KeyGen (ML-KEM)
1. d, z ←↩ U({0, 1}256)
2. (pk, sk′)← Kyber−KeyGen(d) ▷ Specifying randomness d
3. sk← (sk′, pk,H(pk), z)

Output: pk, sk

Algorithm 9.5: Encaps (ML-KEM)
Input: Public key pk.

1. M ←↩ U(M).
2. (K, r)← SHA3− 512(M∥H(pk))
3. c← Kyber−Enc(pk,M, r) ▷ Specifying randomness r

Output: Shared key K, ciphertext c.

Algorithm 9.6: Decaps (ML-KEM)
Input: Secret key sk, ciphertext c.

1. M ′ ← Kyber−Dec(sk′, c) ▷ sk′ secret key for the PKE
2. (K ′, r′)← SHA3− 512(M ′∥H(pk))
3. K ← SHAKE256(z∥c)
4. c′ ← Kyber−Enc(pk,M ′, r′)
5. If c ̸= c′ then K ′ ← K

Output: Shared key K ′

9.3 Comparison with Elliptic Curve Diffie-Hellman

The ML-KEM algorithm was specifically designed for the exchange of symmetric keys between
two parties that do not share a common secret. Currently, the usual security protocols like TLS
1.3 use key exchange protocols for that, namely ECDH (or ECDH) for Elliptic Curve Diffie-
Hellman. This solution relies on elliptic curve cryptography and more precisely on a variant of the
discrete logarithm. As a reminder, an elliptic curve (over a prime field Zp) is a group of points
E = {(x, y) ∈ Z2

p : y2 = x3 + ax2 + bx+ c mod pZ} ∪ {P∞}, we p is large prime, a, b, c are integers
and P∞ is the identity element for the group operation. During an ECDH key exchange, each
party sends the x coordinate of a point P = (x, y) on the curve. Hence, this represents one element
of Zp each, i.e., ⌈log2 p⌉ bits. The total communication cost is then 2⌈log2 p⌉ bits.

A typical example of a curve used in practice is the X25519 curve where a = 486662, b = 1,
c = 0 and p = 2255 − 19. It means that each element that is sent is 256 bits or 32 bytes, giving
a total cost of 64 bytes. The ECDH protocol (and the key exchange protocols a la Diffie-Hellman
in general) are not KEMs, and thus operate differently. This is why the two approaches are not
entirely comparable. We nevertheless give a comparison between ECDH and ML-KEM-512 (based
on Kyber512) in Table 9.3.

! Go to Contents 117

9. ML-KEM : CRYSTALS-KYBER

Table 9.3 (Comparison of Sizes and Timings)

Algorithme |pk| (B) |sk| (B) |c| (B) KeyGen (ms) Encaps
(ms)

Decaps
(ms)

ECDH (X25519) - - 64 - 0.040 0.040

ML-KEM-512 800 1632 768 0.013 0.015 0.011

All the sizes are expressed in bytes (B), and the timings in milliseconds (ms). The timings
correspond to an implementation in “x86_64 OpenSSL implementation” on an Intel Xeon
Platinum 8259CL processor operating at 2.50 GHz [Ope].

118 Go to Contents !

BIBLIOGRAPHY

] RECAP]

• The Kyber public key encryption scheme is based on Regev’s encryption with the
following optimizations

– Replace the leftover hash lemma with another LWE assumption to reduce pa-
rameters

– Add algebraic structure by replacing Z with R = Z[x]/⟨xn + 1⟩. Allows one to
encrypt n buts with a single element of R.

– Replace the discrete Gaussians with centered binomial distributions with very
small parameters (2, 3).

– Store the matrix A as a 256-bit seed, and compress ciphertexts. The compression
induces a deterministic rounding error which must be taken into account in the
security estimation and evaluation of the decryption failure probability.

• The Kyber encryption scheme is IND-CPA under the M-LWE assumption and a hybrid
variant of M-LWE due to compression. The encryption can be transformed into a IND-
CCA2-secure KEM, called ML-KEM, with the Fujisaki-Okamoto transform.

• ML-KEM has three security levels. The algorithm is standardized by NIST in the
FIPS 203 publication, and will serve as the post-quantum key exchange standard.

Bibliography
[BDK+18] J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe,

G. Seiler, and D. Stehlé. CRYSTALS - Kyber: A CCA-Secure Module-Lattice-Based
KEM. In EuroS&P, 2018.

[FO99] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric encryp-
tion schemes. In CRYPTO, 1999.

[Lyu24] V. Lyubashevsky. Basic Lattice Cryptography: The concepts behind Kyber (ML-KEM)
and Dilithium (ML-DSA). IACR Cryptol. ePrint Arch., page 1287, 2024.

[Ope] OpenQuantumSafe. OpenSSL cryptographic suite benchmark. https://
openquantumsafe.org/benchmarking/visualization/openssl_speed.html.

! Go to Contents 119

https://openquantumsafe.org/benchmarking/visualization/openssl_speed.html
https://openquantumsafe.org/benchmarking/visualization/openssl_speed.html

10. ML-DSA: CRYSTALS-DILITHIUM

10

ML-DSA: Crystals-Dilithium

In this last chapter, we present the signature algorithm Crystals-Dilithium [DKL+18] which is
one of the new digital signature standards. It is officially named ML-DSA and the standard has
been published by NIST in the document FIPS 204. Just like we did for Kyber which was a
series of optimizations of Regev’s encryption, we proceed step by step to construct Dilithium.
The scheme indeed follows from a series of optimizations on Lyubashevsky’s signature which we
covered in Chapter 7. We note here that we do not present the other lattice-based signature
standard FN-DSA (following the Hash-and-Sign paradigm) as it requires deeper knowledge in the
geometry of numbers and module lattices of rank 2. We however proposed a simplified version
in TD 5 . This chapter is heavily inspired by the Dilithium specification and the tutorial of
Lyubashevsky [Lyu24].

Contents
10.1 Improvements on Lyubashevsky’s Signature 120

10.1.1 Algebraic Structure . 120
10.1.2 Simpler Rejection: Uniform Distributions 121
10.1.3 Signature Compression . 122
10.1.4 Public Key Compression . 123

10.2 Description of ML-DSA: Crystals-Dilithium 123
10.3 Comparison with Elliptic Curve Digital Signature Algorithm 125

10.1 Improvements on Lyubashevsky’s Signature
We have seen in Chapter 7 two main lattice-based signature designs. One of them correspond to the
Fiat-Shamir paradigm, well known since Schnorr’s signature [Sch89] and other subsequent variants
such as Okamoto’s [Oka92] or Katz and Wang’s [KW03]. However, the peculiarities of lattices
impose to manipulate short elements to ensure the security of the system (relying on the fact that
an adversary should find a short vector in a given lattice without knowledge of a secret that would
help them). This is what led to Lyubashevsky to add this rejection sampling step [Lyu09, Lyu12]
which is essential to maintain the security of the signature as we have seen in TD 3 , giving
its name to the Fiat-Shamir with Aborts paradigm. As it was presented initially, Lyubashevsky’s
signature works over the integers, with discrete Gaussian distributions (which makes the rejection
step computationally complex), and without specific optimizations. We thus start from this scheme
and present the different optimizations brought to obtain the signature Crystals-Dilithium.

10.1.1 Algebraic Structure
COntrarily to Regev’s encryption which allowed for encrypting only one bit at a time, Lyuba-
shevsky’s signature hashes the message to be signed and thus allows for signing arbitrarily long
messages. However, the scheme suffers from inefficiencies inherent to unstructured lattices. Indeed,
the elements to stor are relatively large and the computations relatively inefficient. The public key
contains two matrices A and B = AS where S has k columns. This parameter k is chosen so that
the space of possible challenges {−1, 0, 1}k is of size at least 22λ where λ is the security parameter.

120 Go to Contents !

10.1. IMPROVEMENTS ON LYUBASHEVSKY’S SIGNATURE

Typically, when λ = 128, one would need to choose k ≥ 162. Only storing the matrix B would
then require 162 · d⌈log2 q⌉ bits.

The choice of the challenge space is not random. We indeed need the produced challenges to
have a small norm while being in an exponentially large space. Let us now consider the cyclotomic
ring R = Z[x]/⟨xn + 1⟩ where n is a power of 2. If we consider the set S1 = τ−1({−1, 0, 1}n), this
set already contains 3n elements, that are short with infinity norm bounded by 1, and where the
elements are single ring elements instead of vectors. Working on rings thus allows us to choose
k = 1 while preserving the same security guarantees.

Also, we change a little bit the presentation of the signature by specifying the identity in the
matrix A of Algorithm 7.1. This allows for expressing B as an LWE instance. Combined with the
use of the ring R, we obtain a first intermediate version of Lyubashevsky’s signature scheme. We
also change the notations to be coherent with those of the Dilithium standard.

KeyGen: Sample s1 ←↩ U(Sℓ
1) and s2 ←↩ U(Sk

1). Sample A ←↩ U(Rk×ℓ
q), and compute t =

As1 + s2 mod qR. Output pk = (A, t) and sk = s.

Sign: Given a message M ∈ {0, 1}∗, sample y1 ←↩ DRℓ,s and y2 ←↩ DRk,s. Compute c =
H(pk∥Ay1 +y2 mod qR∥M) ∈ S1, and z1 = y1 + cs1 and z2 = y2 + cs2. Accept z = (z1, z2)
with probability P (z). If rejected, start over the procedure, and return (z, c) otherwise.

Verify: Given a message M and a signature (z1, z2, c), we compute c′ = H(pk∥Az1+ z2− ct mod
qR∥M). Output 1 if c′ = c and if

∥∥[z1|z2]∥∥2 ≤ s√n(k + ℓ).

10.1.2 Simpler Rejection: Uniform Distributions
In the previous algorithm, the rejection probability P (z) depends on the chosen source and target
distributions. Here, we choose Gaussian masks y1,y2 which means the source distribution is a
discrete Gaussian shifter by c[s1|s2]. A fortiori, the simplest in this case is to choose the target
distribution to be the same discrete Gaussian but centered at 0. This requires, when comput-
ing P (z), the computation of a Gaussian mass and thus exponential functions. As the latter are
transcendental, their computation requires floating-point arithmetic which is to avoid in crypto-
graphic implementations. Moreover, this step must be protected against side-channel attacks. It
is therefore necessary to make this rejection step simpler to protect.

We have briefly seen in TD 3 that it is possible to trade the discrete Gaussian distributions
for uniform distributions over hypercubes. The advantage of said uniform distributions is that the
rejection step simply consists in computing the infinity norm of z = [z1|z2]. This change of
parameter induces a new security evaluation, especially on the keys (which represent an M-LWE
instance). We thus update the sampling of the secret key so as to produce slightly larger errors
to increase the hardness of M-LWE. More precisely, instead of choosing s1, s2 uniform in S1, we
choose them uniform in Sη where η ranges between 2 and 4.

In order to guarantee there is no leakage during the rejection step, and thus ensure z is indeed
uniform in its space, we must choose a bound on z that is smaller than that on y. For that it
suffices to choose the bound on z to be γ1−B where γ1 is the bound on y, and B is an upper-bound
on the infinity norm of c[s1|s2]. We must then choose the parameters B and γ1 as small as possible
to reduce the signature size.

In the case of rings, we can show that for all c and s in R, we have ∥cs∥∞ ≤∥c∥1∥s∥∞. In the
scheme above, we impose

∥∥[s1|s2]∥∥∞ ≤ η. We must then bound ∥c∥1. Because c is uniform in S1,
its ℓ1 norm is bounded by n in the worst-case, which is not entirely satisfying. In particular, if
n = 256, the constaint on the challenge space 3n > 2256 is vastly verified. It is then relevant to
reduce the size of this space, by selecting only the challenges that have a small ℓ1 norm to kill two
birds with one stone. This can be achieved by limiting the number of non-zero coefficients of c.
More precisely, we choose the challenge space to be

C = {c ∈ S1 :∥c∥1 = τ̃}

This space is precisely of size 2τ̃
(
n
τ̃

)
, and we can efficiently sample uniform elements in it using

a Fisher-Yates-like algorithm. In particular, to guarantee |C| > 2256, it suffices to choose τ̃ =
60 ≪ 256. This allows one to reduce the size of B. We then define B = τ̃ η. We note that the
standard documents use the notation τ instead of τ̃ . In this course, τ is reserved for the coefficient
embedding. We then obtain the following simplified version of the signature scheme.

KeyGen: Sample s1 ←↩ U(Sℓ
η) and s2 ←↩ U(Sk

η). Sample A ←↩ U(Rk×ℓ
q), and compute t =

As1 + s2 mod qR. Output pk = (A, t) and sk = s.

! Go to Contents 121

10. ML-DSA: CRYSTALS-DILITHIUM

Sign: Given a message M ∈ {0, 1}∗, sample y1 ←↩ U(Sℓ
γ1
) and y2 ←↩ U(Sk

γ1
). Compute c =

H(pk∥Ay1+y2 mod qR∥M) ∈ C, and z1 = y1+cs1 and z2 = y2+cs2. Accept if
∥∥[z1|z2]∥∥∞ ≤

γ1 −B. If rejected, restart the procedure, and output (z, c) otherwise.

Verify: Given a message M and a signature (z1, z2, c), we compute c′ = H(pk∥Az1+ z2− ct mod
qR∥M). Output 1 if c′ = c and if

∥∥[z1|z2]∥∥∞ ≤ γ1 −B.

For security reasons that we omit in this description, γ1 must be chosen to be approximately
B · n(ℓ+ k).

10.1.3 Signature Compression
Lyubashevsky’s signature, and our intermediate variant, can in reality be seen as a zero-knowledge
proof of the secret key. In other words, we prove to the verifier that we know the secret key
associated to our public key, without leaking information on the secret key. Here, this means that
we prove knowledge of1 (s1, s2) such that As1+s2 = t mod qR. Because s2 is very small compared
to q, an idea to compress the signature is to only prove knowledge of s1 such that As1 ≈ t mod qR.

For example, if we consider the high order bits of As1 + s2 mod qR, they match with good
probability those of As1 mod qR. Said differently, because s2 is small, it does not introduce
carries on the high order bits through addition. We thus define two functions Highq and Lowq

which output respectively the high order and low order bits of an element of Rq with a threshold
2γ2. We will define these functions precisely in Section 10.2, but at high level, Highq(x, 2γ2) returns
the quotient of the Euclidean division of x by 2γ2, and Lowq(x, 2γ2) returns the remainder of the
Euclidean division of x by 2γ2 but recentered in the interval J−γ2 + 1, γ2K.

With these notations and by carefully choosing γ2, in most cases we would have Highq(As1 +
s2, 2γ2) = Highq(As1, 2γ2). Not proving knowledge of the exact value of s2 means we do not need
z2 and thus y2. We change the algorithm as follows.

KeyGen: Sample s1 ←↩ U(Sℓ
η) and s2 ←↩ U(Sk

η). Sample A ←↩ U(Rk×ℓ
q), and compute t =

As1 + s2 mod qR. Output pk = (A, t) and sk = s.

Sign: Given a message M ∈ {0, 1}∗, sample y ←↩ U(Sℓ
γ1
). Compute w = Ay mod qR, and

w1 = Highq(w, 2γ2). Then, compute c = H(pk∥w1∥M) ∈ C, and z = y + cs1. Accept if
∥z∥∞ ≤ γ1 − B and if

∥∥Lowq(w − cs2, 2γ2)
∥∥
∞ ≤ γ2 − B. If rejected, restart the procedure,

and (z, c) otherwise.

Verify: Given a message M et a signature (z, c), we compute c′ = H(pk∥Highq(Az− ct, 2γ2) mod
qR∥M). Output 1 if c′ = c and if ∥z∥∞ ≤ γ1 −B.

We explain here the several changes induced by this compression. Before, the verifier computed
Az1 + z2 − ct which was indeed equal to the Ay1 + y2 used during the signing process. Here, the
value used in the hash is w1 = Highq(Ay). In our case, we have

Az− ct = Ay + cAs1 − ct = w − cs2 mod qR.

The high order bits are thus that of w − cs2 and not of w. However, by ensuring the low order
bits of w − cs2 do not overflow, we ensure that the high order bits of w − cs2 match that of
w. This is why the verification computes Highq(Az − ct, 2γ2) and that the signer checks that∥∥Lowq(w − cs2, 2γ2)

∥∥
∞ ≤ γ2 −B. Indeed, if this last condition is verified, we have

w − cs2 = Lowq(w − cs2, 2γ2) + 2γ2 · Highq(w − cs2, 2γ2)
⇐⇒ w = (cs2 + Lowq(w − cs2, 2γ2)) + 2γ2 · Highq(w − cs2, 2γ2)

Yet
∥∥(cs2 + Lowq(w − cs2, 2γ2))

∥∥
∞ ≤ B + (γ2 − B) = γ2. By unicity of the decomposition, we

obtain that Highq(w − cs2, 2γ2) = Highq(w, 2γ2).
Beyond the sole correctness of the signature, the rejection performed by the signer with the

condition
∥∥Lowq(w − cs2, 2γ2)

∥∥
∞ ≤ γ2−B is in fact paramount for the security of the system. As

we have seen in TD 3 , if this rejection is not performed, it is possible to mount a statistical
attack to recover the secret key. Indeed, the adversary can recover w − cs2 where w would be a
centered random variable. By conditioning on c, we could then find the conditional distribution

1In reality, we prove knowledge of slightly larger elements s1, s2, c such that As1 + s2 = ct mod qR. This goes
beyond the scope of this course.

122 Go to Contents !

10.2. DESCRIPTION OF ML-DSA: CRYSTALS-DILITHIUM

whose expectation is linked to s2. Doing this rejection step, we force the random variable X =
Lowq(w − cs2, 2γ2) to be uniform in [−(γ2 −B), (γ2 −B)]. Hence

w − cs2 = X+ 2γ2 · Highq(w, 2γ2)

where neither X nor Highq(w, 2γ2) depends on s2. Hence, the random variable w − cs2 is now
independent of s2.

10.1.4 Public Key Compression
First, the same way as we did for Kyber, it is possible to directly reduce the size of the public
key by computing A from a seed ρ. This compacts the public key to only 256 + nk⌈log2 q⌉ bits.
However, for security reasons, the parameters of Dilithium must be chosen much larger than those
of Kyber. In particular, instead of havinv q ≈ 211.7 in Kyber, Dilithium must choose q ≈ 223 which
drastically increases the size of the public key. To limit this excessive size, the authors proposed a
method to compress t.

In the same way that it was sufficient to prove knowledge of s1 such that As1 ≈ t, it is possible
to prove knowledge of s1 such that As1 ≈ Highq(t, 2

d) for a carefully chosen d. In other words,
we ignore the low order bits of the public key during signing. By decomposing t into t0 + 2dt1,
and by only sending t1 as the public key, the verifier would however be incapable of computing
Highq(Az− ct, 2γ2). We would then need to update the verification as we did before. However, if
the low order bits of ct0 do not overflow, the verification would still work. We could thus do just
like we did for w− cs2 by ensuring∥ct0∥∞ ≤ γ2 for example. Unfortunately, this simple test would
still require a fairly small value of d, leading to only a small compression. Indeed, cs2 was very
small because s2 had infinity norm η = 2, 4. Here, we have ∥ct0∥∞ ≤ τ̃2d, which would impose
choosing a small d to use the same approach as before in an efficient way.

To improve the latter, the authors proposed to transmit an extra bit of information per coeffi-
cients, which would in reality correspond to the carry induced by ct0. This small modification of
the signature allows one to choose a much larger d and compress the public key more efficiently. To
compute this extra bit of information, we make use of the function MakeHint, producing a vector
h ∈ τ−1({0, 1}n)k. The verifier will then use this carry vector h with the help of a function UseHint
to recompute the proper information.

10.2 Description of ML-DSA: Crystals-Dilithium
We first define additional notations, as well as the functions necessary for compressing the signa-
tures and the public key. We define S̃κ as the subset of Sκ but where the lower bound is strict,
i.e., −κ < τi(r) ≤ κ for all i or simply S̃κ = τ−1(J−κ + 1, κKn). For an even (resp. odd) positive
integer α, we define r′ = r mod± α as the unique element r′ such that −α/2 < r′ ≤ α/2 (resp.
−(α− 1)/2 ≤ r′ ≤ (α− 1)/2) such that α divides r′ − r. For all positive integer α, we also define
r′ = r mod+ α as the unique integer r′ ∈ J0, α − 1K such that α divides r′ − r. We define the
following functions. These functions extend to polynomials coefficient-wise, and then to vectors
entry-wise.

We now give the complete algorithms of ML-DSA or Crystals-Dilithium in Algorithms 10.1, 10.2
and 10.3. We only simplify the presentation of certain parts like hashes, encodings, etc. In
particular, just like Kyber, it is possible to specify a random string r as input to make the rest of
the scheme deterministic. Said differently, given the same seed r, the scheme would produce the
same keys and most importantly the same signatures.

Algorithm 10.1: KeyGen (Dilithium)
Input: Ring R of degree n, integers k, ℓ, q, η, τ̃ , γ1, γ2, d, ω.

1. ρ←↩ U({0, 1}256)
2. A← XOF (ρ) ▷ A ∈ Rk×ℓ

q

3. s1 ←↩ U(Sℓ
η)

4. s2 ←↩ U(Sk
η)

5. t = As1 + s2 mod qR
6. (t1, t0)← Power2Roundq(t, d)

Output: pk = (ρ, t1), sk = (s1, s2, t0)

! Go to Contents 123

10. ML-DSA: CRYSTALS-DILITHIUM

Power2Roundq(r, d)

00 r+ ← r mod+ q
01 r0 ← r+ mod± 2d

02 return (r1, r0) = ((r+ − r0)/2d, r0)

MakeHintq(z, r, 2γ2)

03 r1 ← HighBitsq(r, 2γ2)
04 v1 ← HighBitsq(r + z, 2γ2)
05 if r1 ̸= v1 then h← 1 else h← 0
06 return h

UseHintq(h, r, 2γ2)

07 α← (q − 1)/(2γ2)
08 (r1, r0)← Decomposeq(r, 2γ2)

09 if h = 1 et r0 > 0 return (r1 + 1) mod+ α
10 elif h = 1 et r0 ≤ 0 return (r1− 1) mod+ α
11 else return r1

Decomposeq(r, 2γ)

12 r+ ← r mod+ q
13 r0 ← r+ mod± 2γ2
14 if r+ − r0 = q − 1
15 then (r1, r0)← (0, r0 − 1)
16 else r1 ← (r+ − r0)/(2γ2)
17 return (r1, r0)

HighBitsq(r, 2γ2)

18 (r1, r0)← Decomposeq(r, 2γ2)
19 return r1

LowBitsq(r, 2γ2)

20 (r1, r0)← Decomposeq(r, 2γ2)
21 return r0

Figure 10.1: Necessary functions for Dilithium compression.

Algorithm 10.2: Sign (Dilithium)
Input: Public parameters, public key pk = (ρ, t1) ∈ {0, 1}256×Rk

q , secret key sk = (s1, s2, t0) ∈
Rℓ+k+k, message M ∈ {0, 1}∗.

1. y←↩ U(S̃ℓ
γ1
).

2. w← Ay mod qR
3. w1 ← HighBitsq(w, 2γ2)
4. c← H(pk∥w1∥M). ▷ c ∈ C
5. z← y + cs1
6. r0 ← LowBitsq(w − cs2, 2γ2)
7. if ∥z∥∞ ≥ γ1 − ητ̃ or ∥r0∥∞ ≥ γ2 − ητ̃ goto 1.
8. h← MakeHintq(−ct0,w − cs2 + ct0, 2γ2)
9. if ∥ct0∥∞ ≥ γ2 or ∥h∥1 > ω goto 1.

Output: sig = (z,h, c)

Algorithm 10.3: Verify (Dilithium)
Input: Public parameters, public key pk = (ρ, t1) ∈ {0, 1}256 × Rk

q , signature sig = (z,h, c) ∈
Rℓ+k+1, message M ∈ {0, 1}∗.

1. w′1 ← UseHintq(h,Az− 2d · ct1 mod qR, 2γ2)
2. b← (c = H(pk∥w′1∥M)) ∧ (∥z∥∞ ≤ γ1 − ητ̃) ∧ (∥h∥1 ≤ ω)

Output: b ∈ {0, 1}

Parameters

We give in Table 10.1 the three parameter sets called Dilithium-2, Dilithium-3, and Dilithium-5,
corresponding to the different security levels. We also give in Table 10.2 the key and signature
sizes for each security level.

Table 10.1 (Parameters of Dilithium)

n q k ℓ η τ̃ γ1 γ2 d ω

Dil-2 256 8380417 4 4 2 39 217 q−1
88

13 80

Dil-3 256 8380417 6 5 4 49 219 q−1
32

13 55

Dil-5 256 8380417 8 7 2 60 219 q−1
32

13 75

124 Go to Contents !

10.3. COMPARISON WITH ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM

Table 10.2 (Sizes of keys and signatures of Dilithium)

|pk| (B) |sk| (B) |sig| (B)

Dilithium-2 1312 2528 2420

Dilithium-3 1952 4000 3293

Dilithium-5 2592 4864 4595

10.3 Comparison with Elliptic Curve Digital Signature Algorithm
Digital signature algorithms like Falcon or Dilithium aim at authenticating messages, data, or
keys during more complex security protocols. Today, the signature algorithm prioritized in all
these protocols, such as TLS 1.3, is the ECDSA algorithm for Elliptic Curve Digital Signature
Algorithm. An ECDSA signature simply consists in the x coordinate of a point P = (x, y) of an
elliptic curve E = {(x, y) ∈ Z2

p : y2 = x3+ax2+ bx+ c mod pZ}∪{P∞}, as well as a scalar of Z|E|.
Hence, each signature has bit size ⌈log2 p⌉ + ⌈log2|E|⌉. One of the most commonly used curves
is known as NISTP256 where p = 2256 − 232 − 977 and |E| ≈ 2256. Hence, each signature is 512
bits or 64 bytes. Table 10.3 compares the sizes and timings of ECDSA with those of Falcon and
Dilithium. We observe that Falcon and Dilithium are less compact than ECDSA in terms of size,
but are very efficient and competitive with ECDSA in terms of timing. Moreover, Falcon is more
compact than Dilithium but is slightly slower. Thence, the use of Falcon or Dilithium will depend
on the application, some of which might want to minimize bandwidth or memory resources thus
prefering Falcon, and others which might want to optimize computational resources thus prefering
Dilithium. Each algorithm will most likely find relevant applications.

Table 10.3 (Comparison in sizes and timings)

Algorithme |pk| (B) |sk| (B) |sig|
(B)

KeyGen (ms) Sign (ms) Verify (ms)

ECDSA
(NISTP256)

32 32 64 - 0.024 0.074

Falcon512 897 1998 666 8.64 0.352 0.057

Dilithium-II 1312 2528 2420 0.035 0.093 0.035

All sizes are expressed in bytes (B), and timings in milliseconds (ms). The timings correspond
to an implementation in “x86_64 OpenSSL implementation” on an Intel Xeon Platinum
8259CL processor operating at 2.50 GHz [Ope].

! Go to Contents 125

BIBLIOGRAPHY

] RECAP]

• The Dilithium signature scheme is based on Lyubashevsky’s signature with a series of
optimizations

– Add algebraic structure by replacing Z by R = Z[x]/⟨xn+1⟩. Allows for reducing
the dimension of the challenge c to be only a single ring element, and thus reducing
the dimension of the public key.

– Replace discrete Gaussian distributions by uniform distributions over hypercubes.
Allows for simplifying the rejection step which now simply consists in testing the
infinity norm of a vector.

– Compression of the signature by only keeping the high order bits in the commit-
ment step. Requires another rejection step on the low order bits of Ay − cs2 to
guarantee correctness and security.

– Storage of the matrix A as a 256-bit seed and compressing the public key t using a
hint or carry vector. Requires another rejection step on ct0 and the computation
of the carry vector, but allows for cutting the public key size in half.

• The Dilithium signature scheme is EUF-CMA under the M-LWE assumption as well
as a variant of M-SIS due to compression. The signature can be made deterministic
offering sEUF-CMA security.

• Dilithium has three security levels. The algorithm is standardized by NIST in the
publication FIPS 204 under the name ML-DSA, and will serve as the post-quantum
signature standard.

Bibliography
[DKL+18] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehlé.

CRYSTALS-Dilithium: A Lattice-Based Digital Signature Scheme. TCHES, 2018.

[KW03] J. Katz and N. Wang. Efficiency Improvements for Signature Schemes with Tight
Security Reductions. In CCS, 2003.

[Lyu09] V. Lyubashevsky. Fiat-Shamir with Aborts: Applications to Lattice and Factoring-
Based Signatures. In ASIACRYPT, 2009.

[Lyu12] V. Lyubashevsky. Lattice Signatures without Trapdoors. In EUROCRYPT, 2012.

[Lyu24] V. Lyubashevsky. Basic Lattice Cryptography: The concepts behind Kyber (ML-KEM)
and Dilithium (ML-DSA). IACR Cryptol. ePrint Arch., page 1287, 2024.

[Oka92] T. Okamoto. Provably Secure and Practical Identification Schemes and Corresponding
Signature Schemes. In CRYPTO, 1992.

[Ope] OpenQuantumSafe. OpenSSL cryptographic suite benchmark. https://
openquantumsafe.org/benchmarking/visualization/openssl_speed.html.

[Sch89] C.-P. Schnorr. Efficient Identification and Signatures for Smart Cards. In CRYPTO,
1989.

126 Go to Contents !

https://openquantumsafe.org/benchmarking/visualization/openssl_speed.html
https://openquantumsafe.org/benchmarking/visualization/openssl_speed.html

	Contents
	I Security Notions
	1 Definition of Security
	1.1 Perfect Security
	1.1.1 One Time Pad
	1.1.2 Shannon's Theorem

	1.2 Defining Security
	1.2.1 Perfect Security versus Computational Security
	Asymptotic Approach.
	Concrete Approach.
	Computational Security.

	1.2.2 Indistinguishability
	Statistical Indistinguishability.
	Computational Indistinguishability.
	Rényi Divergence.

	1.3 Security Models
	1.3.1 Public-Key Encryption
	IND-CPA Security.
	IND-CCA Security.

	1.3.2 Digital Signature
	EUF-CMA Security.

	1.3.3 Hash Functions
	Security Properties of Hash Functions
	Pseudorandomness and Random Oracle Model

	1.4 Provable Security
	1.4.1 Security Proofs
	Reduction.
	Game Hop.

	II Lattice Theory
	2 Lattices
	2.1 Reminder in Linear Algebra
	Vectors and Matrices
	Quadratic Forms, Inner Products, and Norms
	Linear Independence, Spanning Set, Basis

	2.2 Fundamentals of Lattices
	2.2.1 Lattice Bases
	Determinant of Matrices
	Instructive Examples

	2.2.2 Fundamental Invariants
	Volume of a Lattice
	Minima of a Lattice

	2.2.3 Minkowski's Theorem
	2.2.4 Dual Lattice

	2.3 Gram-Schmidt Orthogonalization
	2.3.1 Orthogonality
	2.3.2 Gram-Schmidt Process
	2.3.3 Gram-Schmidt Minimum

	2.4 Lattice Reduction
	2.4.1 Gauss-Lagrange Reduction: Size-Reduced Basis
	2.4.2 The LLL Algorithm

	3 Hard Problems on Lattices
	3.1 Complexity Classes
	3.2 Shortest and Closest Vector Problems
	3.2.1 Shortest Vector Problem and Variants
	Exact Shortest Vector Problem
	Shortest Independent Vectors Problem
	Approximate Variants of SVP

	3.2.2 Closest Vector Problem and Variants
	Exact Closest Vector Problem
	Approximate Variants of CVP

	3.3 Hardness of SVP and CVP
	3.3.1 NP-Completeness of dCVP
	3.3.2 Equivalence of CVP and dCVP
	3.3.3 Reduction from Approx-GapSVP to Approx-GapCVP
	3.3.4 Hardness of Approx-GapCVP
	3.3.5 Some Lattice Reduction Solvers
	LLL
	Kannan
	Ajtai, Kumar, Sivakumar
	Micciancio, Voulgaris

	III Foundations of Lattice-Based Cryptography
	4 Gaussian Distributions over Lattices
	4.1 Definition of Discrete Gaussians
	4.1.1 Continuous Multidimensional Gaussian Distributions
	4.1.2 Discrete Gaussian Distributions

	4.2 Paramètre de Lissage
	4.2.1 Fourier Transform and Poisson Summation Formula
	4.2.2 Regularity and Smoothing Parameter

	4.3 Properties of Discrete Gaussians
	4.3.1 Basic Properties
	4.3.2 Gaussian Tail Bounds

	4.4 Sampling Gaussians over Lattices
	4.4.1 Klein Sampler

	5 Fundamental Problems: SIS and LWE
	5.1 Short Integer Solution
	5.1.1 Problem Definitions
	Inhomogeneous Variant

	5.1.2 Hardness of Short Integer Solution
	5.1.3 Application: Ajtai Hash Function

	5.2 Learning With Errors
	5.2.1 Problem Definitions
	5.2.2 Computational-Decisional Equivalence
	5.2.3 Hardness of Learning With Errors
	Regev's Proof Structure
	A Word on Quantum Reductions
	Hardness of Variants

	IV Constructions
	6 Public-Key Encryption from LWE
	6.1 Regev Encryption Scheme
	6.1.1 Description
	6.1.2 Security Analysis

	6.2 Dual Regev Encryption Scheme
	6.2.1 Description
	6.2.2 Security Analysis

	7 Signature Schemes
	7.1 Fiat-Shamir with Aborts Paradigm
	7.1.1 From Identification to Signature
	7.1.2 Description
	Rejection Sampling
	Lyubashevsky's Signature Scheme

	7.2 Lattice Trapdoors
	7.2.1 Short Bases and Trapdoor Construction
	7.2.2 Trapdoor Usage
	Solving SIS
	Solving LWE
	Résoudre ISIS

	7.3 GPV Hash-and-Sign Paradigm
	7.3.1 Description
	7.3.2 Security Analysis

	7.4 Standard Model Signatures

	V Efficient Constructions and Standards
	8 Algebraic Lattices and Structured Problems
	8.1 Algebraic Number Theory
	8.1.1 Intuition
	8.1.2 How to Choose the Defining Polynomial f?
	8.1.3 Coefficient Embedding and Multiplication Matrix

	8.2 Structured Problems
	8.2.1 Fundamental Problems over Algebraic Rings
	Ring Short Integer Solution
	Ring Learning With Errors
	Another Fundamental Problem: NTRU

	8.2.2 Generalization to Modules

	8.3 Future Post-Quantum Cryptography Standards from Lattices

	9 ML-KEM : Crystals-Kyber
	9.1 Crystals-Kyber: IND-CPA Public Key Encryption
	9.1.1 Algebraic Structure
	9.1.2 Error Distributions
	Centered Binomial Distribution
	Different Parameters for a Finer Security

	9.1.3 Compression
	Public Key Compression
	Ciphertext Compression and Rounding Errors
	Increased Security with Compression
	Message Encoding

	9.1.4 Description de Kyber
	Pseudo-randomization of the Encryption
	Parameters

	9.2 ML-KEM: IND-CCA Key Encapsulation Mechanism
	9.3 Comparison with Elliptic Curve Diffie-Hellman

	10 ML-DSA: Crystals-Dilithium
	10.1 Improvements on Lyubashevsky's Signature
	10.1.1 Algebraic Structure
	10.1.2 Simpler Rejection: Uniform Distributions
	10.1.3 Signature Compression
	10.1.4 Public Key Compression

	10.2 Description of ML-DSA: Crystals-Dilithium
	Parameters

	10.3 Comparison with Elliptic Curve Digital Signature Algorithm

