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Abstract. We prove that the Module Learning With Errors (M-LWE)
problem with binary secrets and rank d is at least as hard as the stan-
dard version of M-LWE with uniform secret and rank k, where the rank
increases from k to d ≥ (k+ 1) log2 q+ω(log2 n), and the Gaussian noise
from α to β = α ·Θ(n2

√
d), where n is the ring degree and q the modu-

lus. Our work improves on the recent work by Boudgoust et al. in 2020
by a factor of

√
md in the Gaussian noise, where m is the number of

given M-LWE samples, when q fulfills some number-theoretic require-
ments. We use a different approach than Boudgoust et al. to achieve this
hardness result by adapting the previous work from Brakerski et al. in
2013 for the Learning With Errors problem to the module setting. The
proof applies to cyclotomic fields, but most results hold for a larger class
of number fields, and may be of independent interest.

Keywords: Lattice-based cryptography · module learning with errors ·
binary secret

1 Introduction

Lattice-based cryptography has become more and more popular over the past
two decades as lattices offer a variety of presumed hard problems as security
foundations for public-key cryptographic primitives. Lattices, which are discrete
subgroups of the Euclidean space, provide several computational problems that
are conjectured to be hard to solve with respect to both classical and quantum
computers. One central problem is the Shortest Vector Problem (SVP), which
asks to find a shortest non-zero vector from the given lattice. SVP also appears
in a decisional variant (GapSVP), and its approximate counterpart (GapSVPγ).
The latter asks to decide if the norm of such a vector is less than a thresh-
old r or greater than γr for a factor γ ≥ 1. The security of most lattice-based
primitives are however based on average-case problems, such as the Learning
With Errors (LWE) problem introduced by Regev [Reg05,Reg09]. This problem
emerges in two versions: its search variant asks to find the secret s ∈ Znq given
samples of the form (a, q−1〈a,s〉+ e), where a is uniform over Znq and e a small
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error over T = R/Z. The decisional variant asks to distinguish between such
samples for a uniform s ∈ Znq , and uniformly random samples in Znq × T. We
use LWE to denote the latter. The error is usually sampled from a Gaussian dis-
tribution Dα of parameter α > 0. The appeal of the LWE problem comes from
its ties with well-known lattice problems like GapSVPγ . It enjoys both quan-
tum [Reg05] and classical [Pei09,BLP+13] worst-case to average-case reductions
from GapSVPγ , making it a firm candidate for cryptographic constructions.
The LWE problem opened the way to a wide variety of simple to advanced cryp-
tographic primitives ranging from public-key encryption [Reg05,GPV08,MP12],
fully-homomorphic encryption [BGV12,BV14,DM15], recently to non-interactive
zero-knowledge proofs [PS19], and many others.

Although LWE provides provably secure cryptosystems, all these schemes
lack efficiency which motivates the research around structured variants. These
variants gain in efficiency by considering the ring of integers of a number field
(R-LWE) [LPR10,RSW18], a ring of polynomials (P-LWE) [SSTX09] or a mod-
ule over a number field (M-LWE) [BGV12,LS15]. In this work, we focus on the
latter as it offers a nice security-efficiency trade-off by bridging LWE and R-LWE.
Let K be a number field of degree n and R its ring of integers. We use d to
denote the module rank and q for the modulus. We also define the quotient
ring Rq = R/qR, the real tensor fieldKR = K⊗QR and the torus TR∨ = KR/R

∨,
where R∨ is the dual ideal of R. The secret is now chosen in (R∨q )d, and the er-
ror from a distribution ψ over KR. The Search-M-LWE problem asks to recover
the secret s ∈ (R∨q )d from arbitrarily many samples (a, q−1〈a ,s〉 + e mod R∨),
for a uniformly random over Rdq and e sampled from ψ. In this work, we only
consider the decisional variant denoted by M-LWE, where one has to distin-
guish such samples for a uniformly random secret s ∈ (R∨q )d, from uniformly
random samples in Rdq × TR∨ . It also benefits from a worst-case to average-case
reduction, first shown by Langlois and Stehlé [LS15] through a quantum reduc-
tion, and recently by Boudgoust et al. [BJRW20] through a classical reduction
for a module rank d ≥ 2n, where n is the ring degree. The underlying lattice
problems are though restricted to module lattices, which correspond to finitely
generated R-modules, where R is the ring of integers of a number field.

In practice, the LWE problem is often used with a small secret, i.e., Gaussian
(Hermite-Normal-Form-LWE) or even binary (bin-LWE). The latter corresponds
to choosing the secret s in {0, 1}n, and it is particularly interesting as it sim-
plifies computations and thus increases efficiency. Modulus-rank switching tech-
niques [BLP+13,AD17,WW19] rely on using small secrets as it keeps the noise
blowup to a minimum. The binary secret variant also happens to be essential for
some FHE schemes as in [DM15]. First studied by Goldwasser et al. [GKPV10],
it is later improved by Brakerski et al. [BLP+13] and Micciancio [Mic18] using
more technical proofs. Recent work by Brakerski and Döttling [BD20] extends
the hardness to more general secret distributions. The question of whether these
hardness results for bin-LWE carry over to the module setting was left open. As
part of the proof of the classical hardness of M-LWE, a first reduction was pro-
posed from M-LWE to bin-M-LWE using the Rényi divergence by Boudgoust et
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al. [BJRW20]. The reduction increases the module rank from k to d by roughly
a log2 q factor, which allows to preserve the complexity of an exhaustive search,
while increasing the noise by a factor n2d

√
m, where m is the number of sam-

ples, n the ring degree and d the final module rank. Another very recent paper
by Lin et al. [LWW20] uses the noise lossiness argument from [BD20] to prove
the hardness of M-LWE for general entropic distributions.

Our contributions. In this paper, we give an alternative approach to prove
the hardness of M-LWE with binary secrets over cyclotomic fields. The result is
summarized in an informal way in the following. For a more formal statement,
we refer to Theorem 2.

Theorem 1 (Informal). For a cyclotomic field of degree n, the bin-M-LWE
problem with rank d and Gaussian parameter less than β is at least as hard
as M-LWE with rank k and Gaussian parameter α, if d ≥ (k+1) log2 q+ω(log2 n)
and β/α = Θ(n2

√
d), where q is a modulus such that the cyclotomic polynomial

has a specific splitting behavior in Zq[x].

Note that the increase in the noise does not depend on the number of pro-
vided bin-M-LWE samples, in contrast to [BJRW20]. In the hope of achieving
better parameters than [BJRW20], which is inspired by the proof of [GKPV10],
we follow the proof idea of Brakerski et al. [BLP+13] by introducing the two
intermediate problems first-is-errorless M-LWE and ext-M-LWE. We first re-
duce M-LWE to the first-is-errorless M-LWE variant, where the first sample is
not perturbed by an error. We then reduce the latter to ext-M-LWE, which can
be seen as M-LWE with an extra information on the error vector e given by 〈e,z〉
for a uniformly chosen z in the set of binary ring elements set Z = (R∨2 )d. In the
work of Alperin-Sheriff and Apon [AA16] for their reduction from M-LWE to
the deterministic variant Module Learning With Rounding, the authors intro-
duce a variant of ext-M-LWE that gives Tr(〈e,z〉) to the attacker instead. This
variant is not suited for our reduction due to our lossy argument in Lemma 18.
The field trace does not provide enough information to reconstruct NT z from
the hint, where N is our Gaussian matrix. We discuss further the differences
in Section 3.2 and 3.3. We then use a lossy argument, relying on the newly de-
rived ext-M-LWE hardness assumption and a ring version of the leftover hash
lemma, to reduce ext-M-LWE to bin-M-LWE. An overview of the full reduction
is provided in Figure 1.

The main challenge is the use of matrices composed of ring elements. The
proof in [BLP+13, Lem. 4.7] requires the construction of unimodular matrices
which is not straightforward to adapt in the module setting because of invert-
ibility issues. The construction in Lemma 15 relies on units of the quotient
ring R/qR, which are much harder to describe than the units of Z/qZ to say the
least. This is the reason why we need to control the splitting structure of the
cyclotomic polynomial modulo q. Lemma 2 [LS18, Thm. 1.1] solves this issue but
requires q to satisfy certain number-theoretic properties and to be sufficiently
large so that all the non-zero binary ring elements are units of Rq. The second
complication comes from using both the coefficient embedding and the canonical
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M-LWEn,k,m,q,α

M-LWEn,k,d,q,α

first-is-errorless M-LWEn,k+1,d,q,α

ext-M-LWE
n,k+1,d,q,α

√
4B2+1,(R∨2 )d

ext-M-LWEm
n,k+1,d,q,α

√
4B2+1,(R∨2 )d

M-LWE
n,k+1,m,q,γ=αB

√
d
√

4B2+1

bin-M-LWE
n,d,m,q,≤αB

√
2d
√

4B2+1

m ≥ d

Lem. 14, q ≥ 2n, prime

Lem. 16, q prime and fulfilling
number-theoretic requirements

Lem. 17, m ≤ poly(n)

γ ≥ α

Lem. 18, q prime
d ≥ (k + 1) log2 q + ω(log2 n)

Fig. 1. Summary of the proof of Theorem 2, where B = maxx∈R2 ‖σ(x)‖∞ and σ is
the canonical embedding. In cyclotomic fields, we have B ≤ n. Note that Lemma 18
uses d samples from ext-M-LWE, where d is the module rank in bin-M-LWE. The
assumptions on q concern the splitting behavior of the cyclotomic polynomial in Zq[x],
and are discussed in Section 3.3.

embedding. Even though some manipulations on Gaussian distributions require
the use of the canonical embedding, we choose the secret to be binary in the
coefficient embedding rather than the canonical embedding. As discussed in Sec-
tion 3.1 for power-of-two cyclotomics, using the canonical embedding for binary
secrets requires the rank d to be larger by a factor n than when using the coef-
ficient embedding.

In the whole reduction, the ring degree n, number of samples m and mod-
ulus q are preserved, where m needs to be larger than d and q needs to be
a prime satisfying certain number-theoretic properties. With the help of the
modulus-switching technique of Langlois and Stehlé [LS15, Thm 4.8], we can
then relax the restriction on the modulus q to be any polynomially large modu-



On the Hardness of Module-LWE with Binary Secret 5

lus, at the expense of a loss in the Gaussian noise. The ranks must satisfy d ≥
(k + 1) log2 q + ω(log2 n), in the same manner as in [BJRW20]. However, our
noise growth is smaller as our Gaussian parameter only increases by a fac-
tor n

√
2d
√

4n2 + 1 = Θ(n2
√
d) for cyclotomics. Our reduction removes the de-

pendency in m in the noise ratio n2d
√
m present in [BJRW20], which is more

advantageous as we usually take m = O(n log2 n) samples, and also gains an ex-
tra factor

√
d. As we directly show the hardness of decision bin-M-LWE one does

not need the extra search-to-decision step in [BJRW20] which overall improves
their classical hardness proof. Our result implies the hardness of M-LWE with a
small (with respect to coefficients) secret and a moderate rank (e.g., ω(log2 n)),
which holds even with arbitrarily many samples. For a flexible choice of param-
eters (allowing efficiency optimizations), NIST candidates [BDK+18,DKL+18]
considered M-LWE variants with a small secret and also a small rank, while re-
stricting the number of samples to be small (e.g., linear in n) for ruling out the
BKW type of attacks [KF15]. It is difficult to compare our result to the work by
Lin et al. [LWW20] as their reduction does not use the coefficient embedding for
the entropic secret distribution. Additionally, when bridging to LWE, the noise
ratio is improved to

√
10d as our construction in Lemma 15 matches the one

from [BLP+13, Claim 4.6]. Our work thus matches the results from Brakerski et
al. [BLP+13] when we take the ring R to be of degree 1.

The entire reduction is so far limited to cyclotomic fields due to Lemma 14
and 15. However, the other results are proven for a larger class of number fields,
namely for the number fields K = Q(ζ) such that their ring of integers is R =
Z[ζ], where ζ is an algebraic number. It ensures that R and its dual R∨ are linked
by the equality R∨ = (f ′(ζ))−1R, where f is the minimal polynomial of ζ, and
it also ensures the unique factorization of ideals. This class includes cyclotomic
fields, quadratic fields K = Q(

√
d) for square-free d with d 6= 1 mod 4, and

number fields with f of square-free discriminant. These parts of the reduction can
be extended to other number fields by using the quantity B = maxx∈R2

‖σ(x)‖∞
introduced in Section 2.1, which we use throughout Section 3.3 and 3.4. The
infinity norm here is simply the infinity norm over Cn, and σ the canonical
embedding. We discuss how to upper-bound B in Lemma 1, but in the case of
cyclotomic fields we simply have B ≤ n. Extending Lemma 14 and 15 to this
broader class of number fields may however require additional constraints.

Open problems. In this paper, most of our results rely on the class of number
fields K = Q(ζ) where the ring of integers is R = Z[ζ]. Although this class
includes all cyclotomic fields, we leave as an open problem to generalize these
results to a larger class of number fields.

The leftover hash lemma used in the reduction of Lemma 18 requires the mod-
ule rank d to be super-logarithmic in n. The proof of hardness of M-LWE with
binary secret thus remains open for a lower module rank. In practice, a constant
rank is used for increased efficiency, like the CRYSTALS-Kyber [BDK+18] candi-
date at the NIST standardization competition [NIS]. The interest in a lower mod-
ule rank also stems from the extreme case d = 1 which corresponds to R-LWE.
The hardness of bin-R-LWE remains an open problem.
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The construction in Lemma 15 seems optimized in terms of its impact on the
Gaussian parameter. However, its invertibility restricts the underlying number
field, as well as the structure of the chosen modulus q. A better understanding of
the unit group of Rq for general cyclotomic fields and other number fields might
help relax the restrictions on the modulus q for the reduction to go through.

2 Preliminaries

Throughout the paper, q denotes a positive integer, Z denotes the set of integers
and Zq the integers modulo q. In a ring R, we write (p) for the principal ideal
generated by p ∈ R, and Rp for the quotient ring R/(p) = R/pR. For simplicity,
we denote by [n] the set {1, . . . , n} for any positive integer n. We denote the
Kronecker symbol by δi,j which equals 1 if i = j and 0 otherwise. The vectors
are written in bold lowercase letters a and the matrices in bold uppercase let-
ters A. The transpose and Hermitian operators over vectors (resp. matrices) are
respectively denoted by aT (resp. AT ) and a† (resp. A†). The canonical basis
of Cn is given by {ei}i∈[n], where ei = [δi,k]k∈[n]. For a vector a ∈ Cn, we define
the matrix diag(a) = [δi,jai]i,j∈[n] to be the diagonal matrix whose diagonal
entries are the entries of a. The identity matrix of size n × n is denoted by In.
For any a ∈ Cn, we define the Euclidean norm as ‖a‖2 =

√∑
i∈[n] |ai|

2 and
the infinity norm as ‖a‖∞ = maxi∈[n] |ai|. We also define the spectral norm of
any matrix A = [ai,j ]i∈[n],j∈[m] ∈ Cn×m as ‖A‖2 = maxx∈Cm\{0} ‖Ax‖2 / ‖x‖2,
and the max norm as ‖A‖max = maxi∈[n],j∈[m] |ai,j |. For a complex number z,
we denote by R(z) its real component. We use the same notation for complex
polynomials, where the real component is taken coefficient-wise. The statistical
distance between two discrete distribution P and Q over a countable set S is de-
fined as ∆(P,Q) = 1

2

∑
x∈S |P (x)−Q(x)|. It extends to continuous distributions

replacing the sum by an integration. For a finite set S, we denote the uniform dis-
tribution over S by U(S). The operation of sampling an element x ∈ S according
to a distribution P over S is denoted by x←↩ P , where the set S is implied. We
also say that the random variables X1, . . . , Xk are i.i.d. from a distribution P if
they are pair-wise independent and if they all are distributed according to P .

2.1 Algebraic number theory background

A complex number ζ is called an algebraic number if it is root of a polynomial
over Q. The monic polynomial f of minimal degree among such polynomials is
called the minimal polynomial or defining polynomial of ζ, and is unique. If the
minimal polynomial of ζ only has integer coefficients, then ζ is called an algebraic
integer. A number field K = Q(ζ) is the finite field extension of the rationals
by adjoining the algebraic number ζ. Its degree is defined as the degree of the
minimal polynomial of ζ. We define the tensor field KR = K ⊗Q R which can be
seen as the finite field extension of the reals by adjoining ζ.

The set of all algebraic integers in K is a ring called the ring of integers, and
we denote it by R. We always have Z[ζ] ⊆ R, but only special classes of number
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fields verify Z[ζ] = R. Among them, there are cyclotomic fields, which correspond
to number fields where ζ is a primitive ν-th root of unity, for an integer ν. The ν-
th cyclotomic number field has degree n = ϕ(ν), where ϕ is Euler’s totient
function. In this case, the minimal polynomial is f = Φν =

∏
j∈[n](x − αj),

where the αj are the distinct primitive ν-th roots of unity. For the power-of-two
cyclotomic field where ν = 2`+1, it yields n = ϕ(ν) = 2`, and Φν = xn + 1.
The space H. We use t1 to denote the number of real roots of the minimal
polynomial of the underlying number field, and t2 the number of pairs of complex
conjugate roots, which yields n = t1 + 2t2. The space H ⊆ Cn is defined by H ={
x ∈ Rt1 × C2t2 : ∀j ∈ [t2], xt1+t2+j = xt1+j

}
. We can verify thatH is a R-vector

space of dimension n with the columns of H as orthonormal basis, where

H =

It1 0 0
0 1√

2
It2

i√
2
It2

0 1√
2
It2

−i√
2
It2

 , with Ik the identity matrix of size k.

Coefficient embedding. A number field K = Q(ζ) of degree n can be seen
as a Q-vector space of dimension n with basis {1, ζ, . . . , ζn−1}. Hence, every
element x ∈ K can be written as x =

∑n−1
j=0 xjζ

j , with xj ∈ Q. The coefficient
embedding is the isomorphism τ between K and Qn that maps every x ∈ K
to its coefficient vector τ(x) = [x0, . . . , xn−1]T . We also extend the coefficient
embedding to KR, which yields an isomorphism between KR and Rn.
Canonical embedding. All the following definitions extend to KR in the obvi-
ous way. A number fieldK = Q(ζ) with defining polynomial f of degree n has ex-
actly n field homomorphisms σi : K → C that map ζ to each of the distinct roots
of the defining polynomial. We denote by σ1, . . . , σt1 the real embeddings (i.e. the
embeddings that map ζ to one of the real roots of f) and σt1+1, . . . , σt1+2t2 the
complex ones. Since f is in Q[x], the fundamental theorem of algebra states that
the complex roots come as conjugate pairs, and therefore σt1+t2+j = σt1+j for
all j ∈ [t2]. The canonical embedding σ is the field homomorphism from K to Cn

defined as σ(x) =
[
σ1(x), . . . , σn(x)

]T , where the addition and multiplication of
vectors is performed component-wise. The range of σ is a subset of H, and there-
fore we can map any x ∈ K to Rn via the map σH defined by σH(x) = H† ·σ(x)
for all x ∈ K. We also mention that the extension of σ to KR is an isomorphism
from KR to H. Multiplication is no longer component-wise with σH but it can be
described by a left multiplication, namely σH(x · y) = H† · diag(σ(x)) ·HσH(y),
for any x, y ∈ K. Note that for any x ∈ K, H† · diag(σ(x)) ·H ∈ Rn×n, and has
the |σj(x)| as singular values.

We define the trace Tr : K → Q of K by Tr(x) =
∑
j∈[n] σj(x) for any x ∈ K.

We use it to define the dual of R as R∨ = {x ∈ K : Tr(xR) ⊆ Z}. For the class
of number fields for which we have R = Z[ζ], we have R∨ = λ−1R where λ =
f ′(ζ) ∈ C. In particular, for power-of-two cyclotomics λ = n. We also define the
norm N : K → Q of K by N(x) =

∏
j∈[n] σj(x) for any x ∈ K.

Distortion between embeddings. Both embeddings play important roles in
this paper, and we recall how to go from one to the other. By applying σ to
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an element x =
∑n−1
i=0 xiζ

i ∈ K, we see that σ(x) and τ(x) are linked through
a linear operator which is the Vandermonde matrix of the roots of the defining
polynomial f . For j ∈ [n], we let αj = σj(ζ) be the j-th root of f . Then, we
obtain that σ(x) = Vτ(x), where

V =


1 α1 − αn−11

1 α2 − αn−12

| | |
1 αn − αn−1n

 .
This transformation does not necessarily carry the structure from one embed-
ding to the other, e.g., a binary vector in the coefficient embedding need not
to be binary in the canonical embedding. Changing the embedding also impacts
the norm, which is captured by the inequalities

∥∥V−1∥∥−1
2
‖τ(x)‖2 ≤ ‖σ(x)‖2 ≤

‖V‖2 ‖τ(x)‖2. Hence, ‖V‖2 and
∥∥V−1∥∥

2
help approximating the distortion be-

tween both embeddings. Roşca et al. [RSW18] give additional insight on this
distortion for specific number fields. Throughout this paper, we are interested
in the parameter defined by B = maxx∈R2

‖σ(x)‖∞ that is inherent to the ring.
This parameter intervenes in the proof of Lemma 15 and 18, where we need
an upper-bound on ‖σ(x)‖∞, for x ∈ R2, that is independent of x. Recall that
if x is in R2, then its coefficient vector τ(x) is in {0, 1}n. Here, we provide an
upper-bound on B, that is further simplified for cyclotomic number fields.

Lemma 1. Let K be a number field of degree n, and R its ring of integers. Let V
be the transformation between both embeddings. Then, B = maxx∈R2

‖σ(x)‖∞ ≤
n ‖V‖max. In particular, for cyclotomic fields, it yields B ≤ n.

Proof. We can express x ∈ R2 as x =
∑n−1
j=0 bjζ

j , with bj ∈ {0, 1} for all j.
Then, for i ∈ [n], we have

|σi(x)| ≤
n−1∑
j=0

bj |σi(ζ)|j =

n−1∑
j=0

bj |αi|j ≤ ‖V‖max

n−1∑
j=0

bj ≤ n ‖V‖max .

Taking the maximum over all i ∈ [n] yields B ≤ n ‖V‖max. In the case of
cyclotomic fields, the αi are roots of unity and therefore, all the entries of V
have magnitude 1. Hence ‖V‖max = 1 which yields B ≤ n in this case. ut

Ideals and units. An ideal I ⊆ R is a non-zero additive subgroup of R that is
closed under multiplication by R, i.e. for all r, x ∈ R × I, r · x ∈ I. An ideal I
is principal if it is generated by a single element u, meaning I = uR = (u). A
fractional ideal is a set I for which there exists an element d ∈ R such that dI
is an ideal of R. An ideal p 6= R of R is prime if for all a, b ∈ R, a · b ∈ p
implies that a or b is in p. The product of ideals I and J is the set of all
finite sums of xy, where x ∈ I and y ∈ J . We extend the field norm and
define the norm of an ideal N(I) as the index of I as an additive subgroup
of R, which corresponds to N(I) = |R/I|. The norm is still multiplicative and
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verifies N((a)) = |N(a)| for any a ∈ K. For a fractional ideal I, the norm
is defined as N(I) = N(dI)/ |N(d)|. We also define the dual of an ideal I
by I∨ = {x ∈ K : Tr(xI) ⊆ Z}.
In the construction of Lemma 15, we need a condition for binary elements ofR2 =
R/(2) to be invertible in Rq for a specific q. To do so, we rely on the small norm
condition proven in [LS18, Th. 1.1].

Lemma 2 (Th. 1.1 [LS18]). Let K be the ν-th cyclotomic field, with ν =∏
i p
ei
i be its prime-power factorization, with ei ≥ 1. We denote R the ring of in-

tegers of K. Also, let µ =
∏
i p
fi
i for any fi ∈ [ei]. Let q be a prime such that q =

1 mod µ, and ordν(q) = ν/µ, where ordν is the multiplicative order modulo ν.
Then, any element y of Rq = R/qR satisfying 0 < ‖τ(y)‖∞ < q1/ϕ(µ)/s1(µ) is a
unit in Rq, where s1(µ) denotes the largest singular value of the Vandermonde
matrix of the µ-th cyclotomic field.

In the case where ν is a prime power, then so is µ and then [LPR13] states
that s1(µ) =

√
µ if µ is odd, and s1(µ) =

√
µ/2 otherwise. For more general

cases, we refer to the discussions from Lyubashevsky and Seiler [LS18, Conj. 2.6].
We also refer to [LS18, Th. 2.5] that establishes the density of such primes q for
specific values of ν and µ.
We also recall two results from [WW19] that we need in the proof of Lemma 14
to construct a matrix of U ∈ Rk×kq that is invertible in Rq, i.e., such that there
exists a matrix U−1 ∈ Rk×kq that verifies UU−1 = Ik mod qR = U−1U. This
requires the prime q to be unramified in the cyclotomic field, which comes down
to it not dividing the discriminant ∆K . In cyclotomics, this is equivalent to q
not dividing ν. The condition from Lemma 2 subsumes this one as q = 1 mod µ
entails that q is not a prime factor of ν. We say that the vectors a1, . . . ,ai ∈ Rkq
are Rq-linearly independent if for all x1, . . . , xi ∈ Rq,

∑
j∈[i] xjaj = 0 mod qR

implies x1 = . . . = xi = 0.

Lemma 3 (Lem. 9 [WW19]). Let K be the cyclotomic field of degree n =
ϕ(ν), and R its ring of integers. Let q, k be positive integers such that q is a prime
that verifies q ≥ n and q - ν. Then for any i ∈ {0, . . . , k − 1} and Rq-linearly
independent vectors a1, . . . ,ai ∈ Rkq , the probability of sampling a vector b ←↩
U(Rkq ) such that a1, . . . ,ai,b are Rq-linearly independent is at least 1− n

q .

Lemma 4 (Lem. 18 [WW19]). Let K be the cyclotomic field of degree n =
ϕ(ν), and R its ring of integers. Let q, k be positive integers such that q is a
prime that verifies q ≥ n and q - ν. Let A = [a1, . . . ,ak] ∈ Rk×kq . Then, A is
invertible modulo qR if and only if a1, . . . ,ak are Rq-linearly independent.

2.2 Lattices

A lattice Λ is a discrete subgroup of Rn. Since H is isomorphic to Rn, we some-
times consider lattices that are discrete subgroups of H. Each lattice can be
represented by a basis B = [bi]i∈[r] ∈ Rn×r, as the set of all integer linear com-
binations of the basis elements, i.e., Λ =

∑
i∈[r] Z · bi. The dimension of the
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lattice is n and the rank is r. In this work, we only consider full-rank lattices,
namely lattices for which r = n.
We define the dual lattice of a lattice Λ by Λ∗ = {x ∈ Span(Λ) : ∀y ∈ Λ, 〈x,y〉 ∈
Z}. We denote by λ∞1 (Λ) the first minimum of the lattice Λ with respect to
the infinity norm, i.e., the infinity norm of a shortest non-zero vector of Λ. Any
ideal I embeds into a lattice σ(I) in H, and a lattice σH(I) in Rn, which we
call ideal lattices. For an R-module M ⊆ Kd, (σ, . . . , σ)(M) is a lattice in Hd

and (σH , . . . , σH)(M) is a lattice in Rnd, both of which are called module lattices.
The positive integer d is the module rank. To ease readability, we simply use I
(resp. M) to denote the ideal lattice (resp. the module lattice). Note that the
ideal lattice σ(I∨) corresponding to the dual ideal I is the same as the dual
lattice up to complex conjugation, i.e., σ(I∨) = σ(I)∗. We also note that for
the infinity norm, the first minimum of the module lattice Id = I × . . . × I
is the same as the first minimum of the ideal lattice I, i.e., λ∞1 (Id) = λ∞1 (I).
For a vector x ∈ Kd, we define ‖x‖∞ = maxk∈[n],i∈[d] |σk(xi)|, and ‖x‖2,∞ =

maxk∈[n]

√∑
i∈[d] |σk(xi)|2.

2.3 Probabilities

Gaussian measures. For a positive definite matrix Σ ∈ Rn, a vector c ∈ Rn,
we define the Gaussian function by ρc,

√
Σ(x) = exp(−π(x − c)TΣ−1(x − c))

for all x ∈ Rn. We extend this definition to the degenerate case, i.e., posi-
tive semi-definite, by considering the generalized Moore-Penrose inverse. For
convenience, we use the same notation as the standard inverse. We then de-
fine the continuous Gaussian probability distribution by its density Dc,

√
Σ(x) =

(det(Σ))−1/2ρc,
√

Σ(x). By abuse of notation, we call Σ the covariance matrix,
even if in theory the covariance matrix of Dc,

√
Σ is Σ/(2π). If Σ is diagonal

with diagonal vector r2 ∈ (R+)n, we simply write Dc,r, and if c = 0, we omit
it. When Σ = α2In, we simplify further to Dc,α. We then define the discrete
Gaussian distribution by conditioning x to be in a lattice Λ, i.e. DΛ,c,√Σ(x) =

Dc,
√

Σ(x)/Dc,
√

Σ(Λ) for all x ∈ Λ, and where Dc,
√

Σ(Λ) =
∑

y∈ΛDc,
√

Σ(y).
The smoothing parameter of a lattice Λ denoted by ηε(Λ) for some ε > 0,

introduced in [MR07], is the smallest s > 0 such that ρ1/s(Λ∗ \ {0}) ≤ ε. It
represents the smallest Gaussian parameter s > 0 such that the discrete Gaus-
sian DΛ,c,s behaves like a continuous Gaussian distribution. We recall the fol-
lowing bound on the smoothing parameter that we need throughout this paper.

Lemma 5 (Lem. 3.5 [Pei08]). For an n-dimensional lattice Λ and ε > 0, we
have ηε(Λ) ≤

√
ln(2n(1 + 1/ε))/π/λ∞1 (Λ∗).

Lemma 6 (Lem. 4.1 [MR07]). Let Λ be an n-dimensional lattice, ε > 0,
and α > ηε(Λ). Then the distribution of the coset e + Λ, where e ←↩ Dα, is
within statistical distance ε/2 of the uniform distribution over the cosets of Λ.

We now extend a result on the sum of a continuous Gaussian and a discrete one
to more general Gaussian distributions. In particular, the lemma works for two
elliptical Gaussians, which we use in the proof of Lemma 11.
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Lemma 7 (Adapted from Lem. 2.8 [LS15] & Claim 3.9 [Reg09]). Let Λ
be an n-dimensional lattice, a ∈ Rn, R,S two positive semi-definite matrices
of Rn×n, and T = R + S. We also define U =

(
R−1 + S−1

)−1, and we assume
that ρ√U−1(Λ∗ \ {0}) ≤ ε for some ε ∈ (0, 1/2). Consider the distribution Y
on Rn obtained by adding a discrete sample from DΛ+a,

√
R and a continuous

sample from D√S. Then we have ∆(Y,D√T) ≤ 2ε.

Proof. The density function Y is given by

Y (x) =
∑

y∈Λ+a

DΛ+a,
√

R(y)D√S(x− y)

=
1

ρ−a,
√

R(Λ)
√

det S

∑
y∈Λ+a

ρ√R(y)ρ√S(x− y)

=
1

ρ−a,
√

R(Λ)
√

det S

∑
y∈Λ+a

ρ√T(x)ρRT−1x,
√

U(y) [Pei10, Fact 2.1].

=
ρ√T(x)
√

det T
·
√

det TρRT−1x,
√

U(Λ)
√

det Tρ−a,
√

R(Λ)

= D√T(x) ·
(
√

det R
√

det S/
√

det T)−1ρ̂x′,
√

U(Λ∗)

(
√

det R)−1ρ̂−a,
√

R(Λ∗)
,

where x′ = RT−1x, and f̂ denotes the Fourier transform of f . First notice
that (det R·det S)/ det T = 1/ det(R−1TS−1) = 1/ det U−1. Moreover, recalling
that ρ̂c,

√
Σ(w) =

√
det Σe−2iπ〈c,w〉ρ√Σ−1(w), we get∣∣∣1− (
√

det U)−1ρ̂x′,
√

U(Λ∗)
∣∣∣ ≤ ρ√U−1(Λ∗ \ {0}) ≤ ε.

For the denominator, we first notice that for two positive semi-definite matri-
ces A and B, if A − B is positive semi-definite, then ρ√A(w) ≥ ρ√B(w) for
all w ∈ Rn. Since U−1−R−1 = S−1 is positive semi-definite, it yields ρ√R−1(Λ∗\
{0}) ≤ ρ√U−1(Λ∗ \{0}) ≤ ε. Therefore, using the same method as above, we get∣∣∣1− (

√
det R)−1ρ̂−a,

√
R(Λ∗)

∣∣∣ ≤ ρ√R−1(Λ∗ \ {0}) ≤ ε.

which leads to

(
√

det R
√

det S/
√

det T)−1ρ̂x′,
√

U(Λ∗)

(
√

det R)−1ρ̂−a,
√

R(Λ∗)
∈
[

1− ε
1 + ε

,
1 + ε

1− ε

]
⊆ [1− 2ε, 1 + 4ε],

assuming that ε < 1/2. We thus end up with
∣∣Y (x)−D√T(x)

∣∣ ≤ 4εD√T(x).
Integration and factor 1/2 of the statistical distance yield the lemma. ut

Lemma 8 (Lem. 2.10 [BLP+13] & Thm. 3.1 [Pei10]). Let Λ be an n-
dimensional lattice, ε ∈ (0, 1/2], and β, r > 0 such that r ≥ ηε(Λ). Then the
distribution of x + y, obtained by first sampling x from Dβ, and then y sampled
from DΛ,x,r, is within statistical distance 8ε of D

Λ,
√
β2+r2

.
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Module Gaussians. In this section we define Gaussian distributions over R-
modules M ⊆ Kd

R, where K = Q(ζ) is a number field, R its ring of integers,
and KR = K⊗QR. We need to consider the real tensor field KR as the canonical
embedding is an isomorphism between KR and H but not between R and H,
nor K and H. Gaussian distributions over KR have been introduced alongside
the R-LWE problem in [LPR10], and then generalized and used in most papers
dealing with structured variants of LWE. We define general Gaussian distribu-
tions over Kd

R through their embedding to Rnd, namely sampling y(H) ∈ Rnd
according to D√Σ for some positive semi-definite matrix Σ in Rnd×nd and then
mapping it back to Kd

R by y = σ−1H (y(H)). To ease readability, we denote the
described distribution of y ∈ Kd

R by D√Σ.
In the proof of Lemma 16, we also need to identify the distribution of y = Ue

for an arbitrary matrix U and a Gaussian vector e ∈ Kd
R for which the com-

ponents are independent of each other. To do so, we need the ring homomor-
phism θ : Kk×`

R → Cnk×n` defined by

θ(A) =

D1,1 − D1,`

| � |
Dk,1 − Dk,`

 , with Di,j = diag(σ(ai,j)) ∈ Cn×n.

Lemma 9. Let K be a number field of degree n, and d a positive integer. Let S ∈
Rnd×nd be a positive semi-definite matrix, and U ∈ Kd×d

R . We denote Σ =(
H†θ(U)H

)
S
(
H†θ(U)H

)† ∈ Rnd×nd, where H = diag(H, . . . ,H) ∈ Cnd×nd,
with H the matrix form of the basis of the space H previously defined. Then,
the distribution of y = Ue, where e ∈ Kd

R is distributed according to D√S, is
exactly D√Σ.

Proof. Let e = [ei]i∈d ∈ Kd
R be a Gaussian vector distributed according to D√S.

For all i ∈ [d], we have yi =
∑
j∈[d] ui,jej and thus σ(yi) =

∑
j∈[d] σ(ui,j)�σ(ej),

where � denotes the Hadamard product. The Hadamard product a � b of two
vectors a and b can also be expressed as the matrix-vector product diag(a) · b.
It results in

σ(y) =

σ(y1)
|

σ(yd)

 = θ(U)σ(e),

where θ(U) is the block matrix [diag(σ(ui,j))]i,j∈[d] ∈ C
nd×nd. As we have seen

before, we can decompose σ on the basis of H and get σ(yi) = Hy
(H)
i (respec-

tively σ(ei) = He
(H)
i ) for all i ∈ [d]. By using the block matrix product, we end

up with

σ(y) =

H
�

H


y

(H)
1

|
y
(H)
d

 = Hy(H).

Thus Hy(H) = θ(U)He(H), which leads to y(H) = H†θ(U)He(H). Now notice
that the blocks of H†θ(U)H are the H†diag(σ(ui,j))H which correspond to the
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matrix form of the multiplication by ui,j in the basis of the space H and thus is
in Rn×n. Hence H†θ(U)H ∈ Rnd×nd.
By definition, e(H) is distributed according to D√S. Thus y(H) is also distributed
along a 0-centered Gaussian over Rnd, but with covariance matrix

Σ =
(
H†θ(U)H

)
S
(
H†θ(U)H

)†
.

ut

In particular, when S = diag(r21, . . . , r
2
1, . . . , r

2
d, . . . , r

2
d) for some positive re-

als r1, . . . , rd, then
√
S commutes with H and the covariance simplifies to Σ =

H†ŨŨ†H, with Ũ = [diag(σ(rjui,j))]i,j∈[d]. We also need two other lemmata re-
lated to the inner product of Kd

R (which results in an element of KR) between
a Gaussian vector and an arbitrary one. In particular, we use Lemma 11 in the
proof of Lemma 18 in order to decompose a Gaussian noise into an inner product.

Lemma 10 (Lem. 2.13 [LS15]). Let r ∈ (R+)n∩H, z ∈ Kd fixed and e ∈ Kd
R

sampled from D√Σ, where
√

Σ = [δi,jdiag(r)]i,j∈[d] ∈ Rnd×nd. Then 〈z ,e〉 =∑
i∈[d] ziei is distributed according to Dr′ with r′j = rj

√∑
i∈[d] |σj(zi)|

2.

Lemma 11 (Adapted from Cor. 3.10 [Reg09]). Let M ⊂ Kd be an R-
module (yielding a module lattice), let u, z ∈ Kd be fixed, and let β, γ > 0.
Assume that (1/β2 + ‖z‖22,∞ /γ2)−1/2 ≥ ηε(M) for some ε ∈ (0, 1/2). Then the
distribution of 〈z,v〉+e where v is sampled from DM+u,β and e ∈ KR is sampled
from Dγ , is within statistical distance at most 2ε from the elliptical Gaussian Dr

over KR, where rj =
√
β2
∑
i∈[d] |σj(zi)|

2
+ γ2 for j ∈ [n].

Proof. Consider h ∈ (KR)d distributed according to Dr′,...,r′ , where r′ is given

by r′j = γ/
√∑

i∈[d] |σj(zi)|
2 for j ∈ [n]. Then by Lemma 10, 〈z,h〉 is distributed

as Dγ and therefore ∆(〈z,v〉+ e,Dr) = ∆(〈z,v +h〉, Dr). Now, we denote t such
that tj =

√
β2 + (r′j)

2 for j ∈ [n]. Note that by assumption

min
j∈[n]

βr′j/tj = (1/β2 + max
j∈[n]

∑
i∈[d]

|σj(zi)|2 /γ2)−1/2

= (1/β2 + ‖z‖22,∞ /γ2)−1/2 ≥ ηε(M).

Lemma 7 therefore applies and yields that v + h is distributed as Dt,...,t, within
statistical distance at most 2ε. By applying once more Lemma 10 and notic-
ing that the statistical distance does not increase when applying a function
(here the scalar product with z), then we get that 〈z ,v + h〉 is distributed

as Dr within statistical distance at most 2ε, where rj = tj

√∑
i∈[d] |σj(zi)|

2
=√

β2
∑
i∈[d] |σj(zi)|

2
+ γ2 for j ∈ [n]. ut
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2.4 Ring Leftover Hash Lemma

The proof of Lemma 18 also requires a leftover hash lemma over rings, where
the vector contains binary polynomials. We use the following adaption of [Mic07]
proven by Boudgoust et al. [BJRW20].

Lemma 12 (Lem. 7 [BJRW20]). Let q be prime and n, k and d be positive
integers. Further, let f be the defining polynomial of degree n of the number
field K ∼= Q[x]/(f) such that its ring of integers is given by R = Z[x]/(f). We

set Rq = R/qR and R2 = R/2R. Then, ∆ ((C,Cz), (C, s)) ≤ 1
2

√(
1 + qk

2d

)n
− 1,

where C←↩ U((Rq)
k×d), z←↩ U((R2)d) and s←↩ U((Rq)

k).

2.5 Module Learning With Errors

The LWE problem over modules was first defined by Brakerski et al. [BGV12]
and studied at length by Langlois and Stehlé [LS15]. We consider a number
field K of degree n, R its ring of integers, and let d denote the module rank.
Let ψ be a distribution on KR and s ∈ (R∨q )d be a vector. We let A(Rd)

s,ψ denote
the distribution on (Rq)

d × TR∨ obtained by choosing a vector a ←↩ U((Rq)
d),

an element e← ψ and returning (a, q−1〈a,s〉+ e mod R∨).

Definition 1. Let q, d be positive integers with q ≥ 2. Let Υ be a distribution
on a family of distributions on KR. The problem M-LWEn,d,q,Υ is as follows:
Sample s←↩ U((R∨q )d) and ψ ←↩ Υ . The goal is to distinguish between arbitrarily

many independent samples from A
(Rd)
s,ψ and the same number of independent

samples from U((Rq)
d × TR∨). If the number of samples m is fixed, we denote

it by M-LWEn,d,m,q,Υ .

When the error distribution is a Gaussian distribution of parameter α > 0, we
write M-LWEn,d,m,q,α, and if the Gaussian is elliptical bounded by β, i.e., Dr

for r ∈ (R+)n such that ‖r‖∞ ≤ β, we write M-LWEn,d,m,q,≤β . The same goes
for other variants of M-LWE. For the M-LWE problem and its variants that
we introduce later, we denote by Adv[A] the advantage of an adversary A in
distinguishing between the two distributions of the problem.
Binary secret. Another possibility is to change the distribution of the secret.
We focus on the case where the secret is chosen to be binary in the coefficient
embedding. We thus define bin-M-LWEn,d,m,q,Υ to be the M-LWE problem where
the secret s is sampled uniformly in (R∨2 )d. We justify this choice of embedding
in Section 3.1.

3 Hardness of M-LWE with binary secret

In this section, we prove our main contribution which is a reduction from M-LWE
with rank k to bin-M-LWE with rank d satisfying d ≥ (k+ 1) log2 q+ω(log2 n),
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for cyclotomic fields. The reduction preserves the modulus q, that needs to be
prime satisfying number-theoretic restrictions, the ring degree n and the number
of samples m, but the noise is increased by a factor of n

√
2d
√

4n2 + 1. Our proof
follows the same idea as in [BLP+13] that we adapt over modules. The noise ratio
is polynomial in n, but smaller than n2d

√
m in [BJRW20]. Not only does it no

longer depend on the number of samples m, which becomes more advantageous
as the typical choice for m is m = O(n log2 n), but we also gain a factor of

√
d.

For the reduction, m also needs to be larger than the target module rank d, and
at most polynomial in n because of the hybrid argument used in Lemma 17. The
reduction in Theorem 2 works for all cyclotomic fields, but most results apply
for all number fields K = Q(ζ) such that the ring of integers is R = Z[ζ], the
bottleneck being the construction in Lemma 15.

Theorem 2. Let ν =
∏
i p
ei
i , K be the cyclotomic field of degree n = ϕ(ν),

and R its ring of integers. Let µ =
∏
i pi and q be a prime number such

that q = 1 mod µ, ordν(q) = ν/µ and q > max(2n, s1(µ)ϕ(µ)), where s1(µ)
denotes the largest singular value of the Vandermonde matrix of the µ-th cy-
clotomic field. Further, let k, d,m be three positive integers such that d ≥ (k +
1) log2 q + ω(log2 n), and d ≤ m ≤ poly(n). Let α ≥ q−1

√
ln(2nd(1 + 1/ε))/π

and β ≥ α · n
√

2d
√

4n2 + 1. Then there is a reduction from M-LWEn,k,m,q,α
to bin-M-LWEn,d,m,q,≤β, such that if A solves the latter with advantage Adv[A],
then there exists an algorithm B that solves the former with advantage

Adv[B] ≥ 1

3m

(
Adv[A]− 1

2

√(
1 +

qk+1

2d

)n
− 1

)
− 37ε

2
.

The noise ratio β/α contains three main terms. The factor n encapsulates the
norm distortion between the coefficient and the canonical embedding, as well as
the actual length of the binary vectors. The second term

√
2d stems from the

masking of z when introduced in the first hybrid in the proof of Lemma 18. The
last factor

√
4n2 + 1 solely represents the impact of giving information on the

error in the ext-M-LWE problem.

3.1 Choice of embedding for binary secrets

As mentioned in the introduction, the variant of M-LWE using a binary secret
requires the choice of an embedding in which the secret is binary. As praised
in [LPR10,LPR13], the canonical embedding has nice algebraic and geometric
properties that make it a good choice of embedding. However, in this section, we
justify our choice of the coefficient embedding, by analyzing the set of secrets that
are binary in the canonical embedding in the case of power-of-two cyclotomics.
The conjugation symmetry of the canonical embedding first restricts the choice
of secrets to (σ−1({0, 1}n ∩ H))d, where d denotes the module rank and the
space H is the range of σ. In addition, the tightest worst-case to average-case
reductions for M-LWE require s to be taken from (R∨q )d. However, σ−1 maps H
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to KR but not necessarily to R or to R∨. We thus have to further restrict the
set of secrets to

Z = (R∨q ∩ σ−1({0, λ−1}n ∩H))d,

where λ is such that R∨ = λ−1R. In the case of power-of-two cyclotomics, λ = n
is real and therefore yields λZ = (Rq ∩ σ−1({0, 1}n ∩H))d.
Lagrange Basis. As opposed to R2 which corresponds to binary vectors in the
coefficient embedding, the power basis is not adapted to describe the set λZ.
We thus introduce the Lagrange basis. We denote by αj = σj(ζ) the j-th root of
the defining polynomial f . Recall that we assume that αj is real for j ∈ [t1], and
that we have αt1+j = αt1+t2+j ∈ C for j ∈ [t2]. Applying σj to an element r =∑n−1
i=0 riζ

i ∈ KR comes down to evaluating the polynomial pr =
∑n−1
i=0 rix

i at αj .
We use this polynomial interpretation to define elements of KR that form a basis
of σ−1({0, 1}n ∩H).
Lagrange interpolation defines polynomials that map a set of distinct elements
to 0 and 1. Since the αj are distinct as f is irreducible, we can apply a similar
method and define

Lk =
∏

j∈[n]\{k}

x− αj
αk − αj

,

for k ∈ [t1], which is real due to the conjugation symmetry of the roots. For k ∈
{t1 + 1, . . . , t1 + t2}, we define

Lk =
∏

j∈[n]\{k}

x− αj
αk − αj

+
∏

j∈[n]\{k+t2}

x− αj
αk+t2 − αj

= 2R

 ∏
j∈[n]\{k}

x− αj
αk − αj

 .

Hence the polynomials lie in R[x] and we have Lk(αj) = δk,j for (k, j) ∈ [t1]×[n],
and Lk(αj) = δk,j + δk+t2,j for (k, j) ∈ {t1 + 1, . . . , t1 + t2} × [n].
Therefore, by defining the Lagrange basis l with the corresponding lk ∼= Lk(ζ) ∈
KR, we have linear independence and σ−1({0, 1}n ∩H) =

∑
k∈[t1+t2]{0, 1} · lk,

because σ(lk) = ek if k ∈ [t1] and σ(lk) = ek + ek+t2 if k ∈ {t1 + 1, . . . , t1 + t2}.
As far as we are aware, this is the first time that the Lagrange basis is used in
the setting of structured lattice-based cryptography. We now need to determine
which of these combinations lie in Rq in order to properly define the set of
secrets.
Power-of-two cyclotomics. We now look at the Lagrange basis in the specific
case where n is a power of two.

Lemma 13. Let R be the cyclotomic ring of integers of degree n = 2`. Then,
for any integer q ≥ 1, the set Rq ∩ σ−1({0, 1}n ∩H) contains only 0 and 1.

Proof. Recall that in cyclotomic fields, we have t1 = 0 and t2 = n/2. We know
that the defining polynomial is xn + 1 and therefore we can re-index the roots
as αj = exp(i(2j + 1)π/n), j now ranging from 0 to n − 1. We can therefore
study the complex product. We look at the constant coefficient of Lk, i.e., Ak =

Lk(0) = 2R
(∏

0≤j<n,j 6=k
−αj

αk−αj

)
. To ease notation, we write j 6= k instead
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of j ∈ {0, . . . , n− 1} \ {k} for the product indexes. We first look at the product
for a fixed k ∈ {0, . . . , n/2− 1}.∏

j 6=k

(αk − αj) = αn−1k

∏
j 6=k

(1− αj/αk) = −α−1k
∏
j 6=k

(1− ei2π(j−k)/n)

= −α−1k
n−1∏
l=1

(1− ei2πl/n),

using the fact that αnk+1 = 0 and the circularity of the complex exponential. Yet,
we also have

∏n−1
l=0 (x− ei2πl/n) = xn−1 = (x−1)

∑n−1
l=0 x

l. By simplifying both
sides by x−1 and then evaluating at 1, we have

∏n−1
l=1 (1−ei2πl/n) =

∑n−1
l=0 1l = n.

The product of the numerators in the definition of Ak is (−1)n−1αk because we
can pair all of the roots αj with their conjugates, which gives αjαj = |αj |2 =
1, except for αk. Hence, Ak = 2R(−αk/(−n/αk)) because n is even, which
yields Ak = 2

n . Now we take a subset S ⊆ {0, . . . , n/2−1} and we study
∑
k∈S Lk.

Note that the case of S = {0, . . . , n/2−1} corresponds to adding all the Lagrange
basis elements which results in 1, and the case S = ∅ results in 0 by convention.
So we now assume that 0 < |S| < n/2. The constant coefficient of

∑
k∈S Lk

is 2 |S| /n ∈ (0, 1) and is therefore not an integer. Hence,
∑
k∈S Lk /∈ Z[x] which

means that the element
∑
k∈S lk is not in R nor Rq for any q ≥ 1.

It proves that the only binary combination of the Lagrange basis that are in R
are 0 and 1, and the same conclusion is valid for Rq for any q ≥ 1. ut
Hence to preserve the complexity of a brute force attack when comparing the
two embeddings, the module rank would have to be increased by a factor n in
the case where we take the canonical embedding to represent binary secrets.
In this case, the (dual of the) secrets are from {0, 1}d and therefore discard
most of the available ring structure as opposed to Rd2. We remark that this issue
hasn’t been addressed by [LWW20]. It seems that for too narrow bounds on the
entropic secret distribution, the number of available secrets is much smaller in
the canonical embedding compared to the number with regard to the coefficient
embedding.

3.2 First-is-errorless M-LWE

We follow the same idea as Brakerski et al. [BLP+13] by gradually giving
more information to the adversary while proving that this additional information
does not increase the advantage too much. We define the module version of
first-is-errorless LWE, from [BLP+13], where the first equation is given without
error. A similar definition and reduction from M-LWE are given in [AA16]. The
only difference between the two reductions comes from the pre-processing step,
which is simplified in our case due to the further restrictions on q of our overall
reduction.

Definition 2 (First-is-errorless M-LWE). Let K be a number field of de-
gree n and R its ring of integers. Let q, k be positive integers. We denote
by Rq = R/qR, KR = K ⊗Q R, and TR∨ = KR/R

∨ as usual.
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Let Υ be a distribution over a family of distributions over KR. The first-is-
errorless variant of the M-LWE problem is to distinguish between the following
cases. On the one hand, the first sample is uniform over (Rq)

k × q−1R∨/R∨

and the rest are uniform over (Rq)
k × TR∨ . On the other hand, there is some

unknown s uniformly sampled over (R∨q )k and ψ sampled from Υ such that the

first sample is from A
(Rk)
s,{0} and the rest are distributed as A(Rk)

s,ψ , where {0} is the
distribution that is deterministically 0.
We denote it by first-is-errorless M-LWEn,k,q,Υ or, when the number of sam-
ples m is fixed, first-is-errorless M-LWEn,k,m,q,Υ .

Lemma 14 (Adapted from Lem. 4.3 [BLP+13]). Let K be the cyclotomic
field of degree n = ϕ(ν), and R its ring of integers. Let q ≥ 2n be a prime integer
such that q - ν, k a positive integer, and Υ a distribution over a family of dis-
tributions over KR. There is a polynomial-time reduction from M-LWEn,k−1,q,Υ
to the variant first-is-errorless M-LWEn,k,q,Υ .

Proof. The reduction first chooses a′ ←↩ U((Rq)
k) and then b2, . . . ,bk i.i.d.

from U((Rq)
k) such that a′,b2, . . . ,bk are Rq-linearly independent. Each time

we draw a uniformly random column, the probability that the new column is Rq-
linearly independent with the previous ones is at least 1 − n/q for q ≥ n by
Lemma 3. Since we require q ≥ 2n, this probability is at least 1/2. Therefore, we
only need a polynomial number of uniformly sampled columns in Rkq to construct
a matrix of Rk×kq invertible modulo qR.

The preprocessing step results in a matrix U =
[
a′, b2, . . . , bk

]
∈ (Rq)

k×k

that is invertible modulo qR according to Lemma 4. Then, sample s0 uniformly
in R∨q . The reduction is as follows. For the first sample, it outputs (a′, q−1·s0 mod

R∨) ∈ (Rq)
k × q−1R∨/R∨. The other samples are produced by taking (a, b) ∈

(Rq)
k−1×TR∨ from the M-LWE challenger, picking a fresh randomly chosen a′′ ∈

Rq, and outputting (U(a′′|a), b+ q−1(s0 · a′′) mod R∨) ∈ (Rq)
k ×TR∨ , with the

vertical bar denoting concatenation. We now analyze correctness. First note that
the first component is uniform over (Rq)

k. Indeed, a′ is uniform over (Rq)
k for

the first sample, and since a is uniform over (Rq)
k−1, a′′ is uniform over Rq,

and U is invertible in (Rq)
k×k, then U(a′′|a) is uniform over (Rq)

k as well.
If b is uniform, the first sample yields q−1s0 mod R∨ uniform over q−1R∨/R∨.

For the other samples, b + q−1(s0 · a′′) mod R∨ is uniform over TR∨ and in-
dependent of U(a′′|a) but also independent from the first sample because b
masks q−1(s0 · a′′). If b = q−1〈a,s〉 + e mod R∨ for some uniform s ∈ (R∨q )k−1

and e ←↩ ψ for some ψ ←↩ Υ , then q−1s0 = q−1〈e1 , (s0|s)〉 = q−1〈Ue1 ,
U−T (s0|s)〉 = q−1〈a′ ,U−T (s0|s)〉, where e1 = [1, 0, . . . , 0]T . For the other sam-
ples, we have

b+ q−1(s0 · a′′) mod R∨ = q−1〈a,s〉+ q−1(s0 · a′′) + e mod R∨

= q−1〈(a′′|a),(s0|s)〉+ e mod R∨

= q−1〈U(a′′|a),U−T (s0|s)〉+ e mod R∨.
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Note that (s0|s) is uniform over (R∨q )k so U−T (s0|s) is also uniform over (R∨q )k

because U−T is invertible in Rq. Therefore the reduction outputs samples ac-
cording to first-is-errorless M-LWE with secret s′ = U−T (s0|s). ut

3.3 Extended M-LWE

We now define the module version of the Extended LWE problem introduced
in [BLP+13], where the adversary is allowed a hint on the errors. As opposed
to [AA16], we allow for multiple secret and one single hint vector z, as required
by our final reduction of Lemma 18.

Definition 3 (Extended M-LWE). Let K be a number field of degree n,
and R its ring of integers. Let m, q, k, t be positive integers. Let Z ⊆ (R∨)m

and ψ a discrete distribution over q−1(R∨)m. The Extended M-LWE prob-
lem, denoted by ext-M-LWEtn,k,m,q,ψ,Z , is as follows. The algorithm first sam-
ples z ∈ Z and then receives a tuple (A, (bi)i∈[t], (〈ei ,z〉)i∈[t]), over (Rq)

k×m ×(
(q−1R∨/R∨)m

)t × (q−1R∨)t. Its goal is to distinguish between the following
cases.
On one side, A is sampled uniformly over (Rq)

k×m, and for all i ∈ [t], ei ∈
q−1(R∨)m are independent and identically distributed from ψ, and define bi =
q−1AT si + ei mod R∨ for some uniformly chosen si ∈ (R∨q )k.
On the other side, everything is identical except that the bi are sampled uniformly
over (q−1R∨/R∨)m, independently from A and the error vectors.

For simplicity in what follows, for a matrix A ∈ Rm×m, we denote by A⊥ ∈
Rm×(m−1) the submatrix of A obtained by removing the leftmost column. Our
reduction from first-is-errorless M-LWE to ext-M-LWE in Lemma 16 requires
the construction of a matrix Uz ∈ Rm×m, for all vectors z ∈ Z = (R∨2 )m,
satisfying several properties. This matrix allows us to transform samples from
a first-is-errorless M-LWE challenger into samples that we can give to an oracle
for ext-M-LWE. The largest singular value of its submatrix U⊥z (when embed-
ded with θ), controls the increase in the Gaussian parameter. We propose a
construction for which we bound the largest singular value above by a quantity
independent on z, as needed in the reduction.

Lemma 15. Let ν =
∏
i p
ei
i , K be the cyclotomic field of degree n = ϕ(ν),

and R its ring of integers. Let µ =
∏
i pi and q be a prime number such that q =

1 mod µ, ordν(q) = ν/µ and q > s1(µ)ϕ(µ), where s1(µ) denotes the largest
singular value of the Vandermonde matrix of the µ-th cyclotomic field. Finally,
let m be a positive integer, and Z = (R∨2 )m, and we recall the ring parameter B =
maxx∈R2 ‖σ(x)‖∞. For all z ∈ Z, there is an efficiently computable matrix Uz ∈
Rm×m that is invertible modulo qR and that verifies the following: z is orthogonal
to the columns of U⊥z , and the largest singular value of θ(U⊥z ) ∈ Cmn×(m−1)n is
at most ξ = 2B.

Proof. Recall that for these number fields, we have R∨p = λ−1Rp for any p ∈ Z
with λ = f ′(ζ). Let z ∈ Z and denote z̃ = λz ∈ Rm2 . First, we construct Uz
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in the case where all the z̃i are non-zero. To do so, we define the intermediate
matrices A, and B of Rm×m, all unspecified entries being zeros:


1
z̃1
-z̃2

-z̃m
z̃m-1

U⊥z

Uz = =




1
z̃1

z̃m-1

A⊥

+




0 -z̃2

-z̃m
0

B⊥

The matrix Uz is invertible in modulo qR only if all the z̃i (except z̃m) are
in R×q . Yet, since they are all non-zero binary polynomials (elements of R2), we
have that for all i in [m], ‖τ(z̃i)‖∞ = 1, where τ is the coefficient embedding.
By Lemma 2, since q verifies the algebraic conditions taking all fi = 1 and
q1/ϕ(µ)/s1(µ) > 1, all the z̃i are in R×q .
By construction, the last m− 1 columns of Uz are orthogonal to z̃. Let U⊥z be
the submatrix of Uz obtained by removing the leftmost column as shown above.
Since θ is a ring homomorphism, we have θ(U⊥z ) = θ(A⊥) + θ(B⊥). We now
need to bound the spectral norm of these two matrices, and use the triangle
inequality to conclude. For any vector x ∈ C(m−1)n, we have that

∥∥θ(A⊥)x
∥∥
2

=√∑
i∈[m−1]

∑
j∈[n] |σj(z̃i)|

2 ∣∣xj+n(i−1)∣∣2 ≤ B ‖x‖2, because each z̃i is in R2. This
yields

∥∥θ(A⊥)
∥∥
2
≤ B. A similar calculation on B⊥ leads to

∥∥θ(B⊥)
∥∥
2
≤ B, thus

resulting in
∥∥θ(U⊥z )

∥∥
2
≤ 2B.

Now assume that z̃i0 , . . . , z̃m are zeros for some i0 in [m]. If the zeros do not
appear last in the vector z̃, we can replace z̃ with Sz̃, where S ∈ Rm×m swaps the
coordinates of z̃ so that the zeros appear last. Since S is unitary, it preserves the
singular values as well as invertibility. Then, the construction remains the same
except that the z̃i0 , . . . , z̃m on the diagonal are replaced by 1. The orthogonality
is preserved, and

∥∥θ(U⊥z )
∥∥
2
can still be bounded above by 2B. ut

Notice that when the ring is of degree 1, the constructions in the different cases
match the ones from [BLP+13, Claim 4.6]. So do the singular values as B ≤ n = 1
by Lemma 1. Also, the construction differs from the notion of quality in [AA16]
due to the discrepancies between the two definitions of ext-M-LWE.

Lemma 16 (Adapted from Lem. 4.7 [BLP+13]). Let ν =
∏
i p
ei
i , K be

the cyclotomic field of degree n = ϕ(ν), and R its ring of integers. Let µ =
∏
i pi

and q be a prime such that q = 1 mod µ, ordν(q) = ν/µ and q > s1(µ)ϕ(µ),
where s1(µ) denotes the largest singular value of the Vandermonde matrix of
the µ-th cyclotomic field. Let m, k positive integers, Z = (R∨2 )m, ε ∈ (0, 1/2)
and α ≥ q−1

√
ln(2mn(1 + 1/ε))/π. Then, there is a probabilistic reduction from

first-is-errorless M-LWEn,k,m,q,α to ext-M-LWEn,k,m,q,α
√
4B2+1,Z that reduces

the advantage by at most 33ε/2, where B = maxx∈R2
‖σ(x)‖∞.
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Note that by the transference theorems, we have λ∞1 (R) ≥ N(R)1/n = 1. So,
using the fact that (qΛ)∗ = q−1Λ∗, we have

λ∞1 ((q−1(R∨)m)∗) = λ∞1 (q((R∨)m)∗) = qλ∞1 (((R∨)m)∗) = qλ∞1 (R) ≥ q,

which together with Lemma 5 yields q−1
√

ln(2mn(1 + 1/ε))/π ≥ ηε(q−1(R∨)m).

Proof. Assume we have access to an oracle O for ext-M-LWE
n,k,m,q,α

√
ξ2+1,Z .

We take m samples from the first-is-errorless challenger, resulting in

(A,b) ∈ (Rq)
k×m × ((q−1R∨/R∨)× Tm−1R∨ ).

Assume we need to provide samples to O for some z ∈ Z. By Lemma 15 we
can efficiently compute a matrix Uz ∈ Rm×m that is invertible modulo qR, such
that its submatrix U⊥z is orthogonal to z, and that θ(U⊥z ) has largest singular
value less than ξ = 2B. The reduction first samples f ∈ Km

R from the continuous
Gaussian distribution of covariance matrix α2(ξ2Imn − H†θ(U⊥z )θ(U⊥z )†H) ∈
Rmn×mn, where H is defined as in Section 2.3. Note that H is unitary and
therefore preserves the largest singular value. The reduction then computes b′ =
Uzb+ f and samples c from Dq−1(R∨)m−b′,α, and finally gives the following to O

(A′ = AUT
z ,b

′ + c mod R∨, 〈z,f + c〉).

Note that this tuple is in (Rq)
k×m × (q−1R∨/R∨)m × q−1R∨, as required. We

now prove correctness. First, consider the case where A is uniformly random
over Rk×mq and b = q−1AT s + e mod R∨ for some uniform s ∈ (R∨q )k, and e
sampled from {0} × Dm−1

α where {0} denotes the distribution that is deter-
ministically 0. Since Uz is invertible modulo qR, A′ = AUT

z is also uniform
over (Rq)

k×m as required. From now on we condition on an arbitrary A′ and
analyze the distribution of the remaining components. We have

b′ = q−1UzA
T s + Uze + f

= q−1(A′)T s + Uze + f .

Since the first coefficient of e is deterministically 0 the first column is ignored in
the covariance matrix, and then Uze is distributed as the Gaussian over Km

R of
covariance matrix α2H†θ(U⊥z )θ(U⊥z )†H by Lemma 9. Hence the vector Uze+f is
distributed as the Gaussian overKm

R of covariance matrix α2H†θ(U⊥z )θ(U⊥z )†H+
α2(ξ2Imn − H†θ(U⊥z )θ(U⊥z )†H) which is identical to Dm

αξ. Since q
−1(A′)T s ∈

q−1(R∨)m, the coset q−1(R∨)m−b′ is the same as q−1(R∨)m− (Uze+ f), which
yields that c can be seen as being sampled from Dq−1(R∨)m−(Uze+f),α. By the
remark made before the proof, we have α ≥ ηε(q−1(R∨)m), so by Lemma 8, the
distribution of Uze+ f +c is within statistical distance 8ε of D

q−1(R∨)m,α
√
ξ2+1

,
which shows that the second component is correctly distributed up to 8ε. Note
that Uze =

∑
i∈[m] ei · ui is in the space spanned by the columns of U⊥z be-

cause e1 = 0. This yields 〈z,Uze〉 = 0 as z is orthogonal to the columns of U⊥z .
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This proves that the third component equals 〈z,Uze+f +c〉 and is thus correctly
distributed.

Now consider the case where both A and b are uniform. First, observe that α ≥
ηε(q

−1(R∨)m) and therefore by Lemma 6, the distribution of (A,b) is within
statistical distance ε/2 of the distribution of (A, e′+e) where e′ ∈ (q−1R∨/R∨)m

is uniform and e is distributed from {0} ×Dm−1
α . So we can assume our input

is (A, e′ + e). A′ is uniform as before, and clearly independent of the other
two components. Moreover, since b′ = Uze

′ + Uze + f and Uze
′ ∈ q−1(R∨)m,

then the coset q−1(R∨)m − b′ is identical to q−1(R∨)m − (Uze + f). For the
same reasons as above, Uze + f + c is distributed as D

q−1(R∨)m,α
√
ξ2+1

within
statistical distance of at most 8ε, and in particular independent of e′. So the
third component is correctly distributed because once again 〈z ,Uze〉 = 0. Fi-
nally, since e′ is independent of the first and third components, and that Uze

′

is uniform over (q−1R∨/R∨)m as Uz is invertible modulo qR, it yields that the
second component is uniform and independent of the other ones as required. ut

Instantiation in power-of-two cyclotomics. The condition on the modulus q
in Lemma 15 and 16 stems from the invertibility result from Lyubashevsky and
Seiler [LS18]. This result can be simplified in the power-of-two case [LS18, Cor.
1.2] where it is conditioned on the number κ > 1 of splitting factors of xn + 1
in Zq[x]. Choosing κ as a power of two less than n = 2`, q now has to be a prime
congruent to 2κ + 1 modulo 4κ. The invertibility condition then becomes 0 <
‖τ(y)‖∞ < q1/κ/

√
κ for any y in Rq. The upper bound is decreasing with κ so

the smaller κ, the more invertible elements. The smallest choice for κ is κ = 2,
which leads to choosing a prime q = 5 mod 8. In our context, having q1/2/

√
2 > 1

is sufficient as our elements have binary coefficients. This requires q > 2 which
is subsumed by q = 5 mod 8.

Lemma 17 (Adapted from Lem. 4.8 [BLP+13]). Let K be a number field
of degree n, R its ring of integers, and k,m, q, t be positive integers such that t ≤
poly(n). Let ψ be a discrete distribution over q−1(R∨)m, and Z ⊆ (R∨)m. There
is a reduction from ext-M-LWEn,k,m,q,ψ,Z to ext-M-LWEtn,k,m,q,ψ,Z that reduces
the advantage by a factor of t.

Proof. Let O be an oracle for ext-M-LWEtn,k,m,q,ψ,Z . For each i ∈ {0, . . . , t}, we
denote by Hi the hybrid distribution defined as

(A, (b1, . . . ,bi,ui+1, . . . ,ut), (〈ej ,z〉)j∈[t]),

where A←↩ U(Rk×mq ), the uj are independent and identically distributed (i.i.d.)
from U((q−1R∨/R∨)m), the ej are i.i.d. from ψ, and bj = q−1AT sj+ej mod R∨

for sj i.i.d. from U((R∨q )k) for every j ∈ [t]. By definition, we have Adv[O] =
|Pr(O(Ht))− Pr(O(H0))|. The reduction A works as follows.

1. Sample z uniformly from Z and get (A,b, y = 〈e,z〉) as input
of ext-M-LWEn,k,m,q,ψ,Z .
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2. Sample i∗ uniformly from [t].
3. Sample s1, . . . , si∗−1 uniformly from (R∨q )k, e1, . . . , ei∗−1, ei∗+1, . . . , et from ψ

and finally ui∗+1, . . . ,ut uniformly from (q−1R∨/R∨)m.
4. Compute bj = q−1AT sj + ej mod R∨ for all j ∈ [i∗ − 1], and yj = 〈ej ,z〉

for all j ∈ [t] \ {i∗}.
5. Define (b′j)j∈[t] as (b1, . . . ,bi∗−1,b,ui∗+1, . . . ,ut). Then call the oracle O

on input
(
A, (b′j)j∈[t], (y1, . . . , yi∗−1, y, yi∗+1, . . . , yt)

)
, and return the same

output as O.

If b is uniform, then the distribution in 5. is exactlyHi∗−1 whereas if b is M-LWE,
then the distribution is Hi∗ . By a standard hybrid argument, the oracle can dis-
tinguish between the two for some i∗ if it can distinguish between H0 and Ht.
So the output is correct over the randomness of i∗. Since i∗ is uniformly chosen
we have

Adv[A] = |Pr(A(b M-LWE))− Pr(A(b uniform))|

=

∣∣∣∣∣∣
∑
i∗∈[t]

1

t
Pr(A(Hi∗))−

∑
i∗∈[t]

1

t
Pr(A(Hi∗−1))

∣∣∣∣∣∣
=

1

t
Adv[O]

ut

3.4 Reduction to bin-M-LWE

We now provide the final step of the overall reduction, by reducing to the
binary secret version of M-LWE using a sequence of hybrids. The idea is to
use the set Z of the ext-M-LWE problem as our set of secrets. The prob-
lem ext-M-LWEmn,k,d,q,α,{0}d mentioned in the lemma statement is trivially harder
than ext-M-LWEmn,k,d,q,α,(R∨2 )d , that is also why it is not specified in Figure 1.

Lemma 18 (Adapted from Lem. 4.9 [BLP+13]). Let K = Q(ζ) be a
number field of degree n, such that its ring of integers is R = Z[ζ], with defin-
ing polynomial f . Let q be a prime modulus. Let k,m, d be positive integers such
that d ≥ k log2 q+ω(log2 n) Further, let ε ∈ (0, 1/2) and α, γ, β, δ be positive reals
such that α ≥ q−1

√
2 ln(2nd(1 + 1/ε))/π, γ = αB

√
d, β = αB

√
2d, where B =

maxx∈R2
‖σ(x)‖∞, and δ = 1

2

√
(1 + qk/2d)n − 1. Then there is a reduction

from ext-M-LWEmn,k,d,q,α,(R∨2 )d , M-LWEn,k,m,q,γ and ext-M-LWEmn,k,d,q,α,{0}d
to bin-M-LWEn,d,m,q,≤β, such that if B1, B2 and B3 are the algorithms obtained
by applying these hybrids to an algorithm A, then

Adv[A] ≤ Adv[B1] + Adv[B2] + Adv[B3] + 2mε+ δ.

Proof. For x ∈ R∨, we denote x̃ = λx ∈ R as before, where λ = f ′(ζ).
We extend this notation to vectors and matrices in the obvious way. We con-
sider z ←↩ U((R∨2 )d) and e ∈ Km

R sampled from the continuous Gaussian Dm
r
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with parameter vector r with r2j = γ2 + α2
∑
i |σj(z̃i)|

2. Yet, we have ‖r‖∞ =√
γ2 + α2 ‖z̃‖22,∞, as well as ‖z̃‖22,∞ ≤

∑
i∈[d] ‖σ(z̃i)‖2∞. Recalling the param-

eter B = maxx∈R2
‖σ(x)‖∞, that can be bounded above by n for cyclotomics

by Lemma 1, we get ‖r‖∞ ≤
√
γ2 +B2dα2 = B

√
2dα = β. In addition, we

sample A uniformly over (Rq)
d×m and define b = q−1AT z + e mod R∨.

First hybrid. We denote by H0 the distribution of (A,b) and H1 the distribution
of (A, q−1AT z − λNT z + ê mod R∨), where N ←↩ Dd×mq−1R∨,α and ê ←↩ Dm

γ . By
looking at each component of the vectors we claim that ∆([−NT z̃+ ê]i, ei) ≤ 2ε.
Indeed, (1/α2 + ‖z̃‖22,∞ /γ2)−1/2 ≥ α/

√
2 and α/

√
2 ≥ ηε(q

−1(R∨)d) as ex-
plained for Lemma 16. If ni ∈ q−1(R∨)d denotes the i-th column of N, Lemma 11
yields the claim as [−NT z̃+ê]i = 〈ni,−z̃〉+êi, thus giving∆(−NT z̃+ê, e) ≤ 2mε.

|Pr(A(H0))− Pr(A(H1))| ≤ 2mε. (1)

Second hybrid. We define H2 to be the distribution of (Â, q−1ÂT z − λNT z +

ê mod R∨) = (Â, q−1(λB)TCz + ê mod R∨) where B is uniformly sampled
over (R∨q )k×m, C uniformly sampled over Rk×dq and Â = λq(q−1CTB+N mod
R∨). We argue that a distinguisher between H1 and H2 can be used to derive an
adversary B1 for ext-M-LWEmn,k,d,q,α,(R∨2 )d with the same advantage. To do so, B1
transforms the samples from the challenger of the ext-M-LWE problem to sam-
ples defined in H1 or the ones in H2 depending on whether or not the received
samples are uniform. In the uniform case, (C, (λq)−1A,NT z) can be efficiently
transformed into a sample from H1. Note that (λq)−1A indeed corresponds to
the uniform case of ext-M-LWE, because A is uniform over Rq and (λq)−1Rq
can be seen as q−1R∨/R∨. In the other case, if we apply the same transformation
to the ext-M-LWE sample (C, q−1CTB+N mod R∨,NT z), it leads to a sample
from H2. Hence, B1 is a distinguisher for ext-M-LWEmn,k,d,q,α,(R∨2 )d , and

|Pr(A(H1))− Pr(A(H2))| = Adv[B1]. (2)

Third hybrid. Next we define H3 to be the distribution of (Â, q−1B̃T s + ê mod

R∨), where B̃ = λB ∈ Rk×mq , and s is uniform over (R∨q )k. By the Ring
Leftover Hash Lemma stated in Lemma 12, we have that (C,Cz̃) is within
statistical distance at most δ from (C, s̃). By multiplying by λ−1 and using
the fact that a function does not increase the statistical distance, we have
that ∆((C,Cz), (C, s)) ≤ δ. Note that the condition d ≥ k log2 q + ω(log2 n)
implies δ ≤ n−ω(1). This yields

|Pr(A(H2))− Pr(A(H3))| ≤ δ. (3)

Fourth hybrid. We then replace the second component by the uniform as we de-
fine H4 to be the distribution of (Â,u), with u←↩ U(TmR∨). A distinguisher be-
tween H3 and H4 can be used to derive an adversary B2 for M-LWEn,k,m,q,γ . For
that, B2 applies the the efficient transformation to the samples from the M-LWE
challenger, which turns (B̃,u) into a sample from H4 in the uniform case,
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and (B̃, q−1B̃T s+ ê mod R∨) into a sample from H3 in the M-LWE case. There-
fore, B2 is a distinguisher for M-LWEn,k,m,q,γ such that

|Pr(A(H3))− Pr(A(H4))| = Adv[B2]. (4)

Last hybrid. We now change Â back to uniform by defining H5 to be the dis-
tribution of (A,u). With the same argument as for the second hybrid, we can
construct an adversary B3 for ext-M-LWEmn,k,d,q,α,{0}d (which corresponds to
multiple-secret M-LWE without additional information on the error) based on
a distinguisher between H4 and H5. It transforms (C, (λq)−1Â,NT0) into a
sample from H4 (M-LWE case) and (C, (λq)−1A,NT0) into a sample from H5

(uniform case). We then get

|Pr(A(H4))− Pr(A(H5))| = Adv[B3]. (5)

Putting Eq. 1, 2, 3, 4, 5 altogether yields the result. ut
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